【題目】如圖,矩形ABCD中, E是AD的中點,將沿直線BE折疊后得到,延長BG交CD于點F若, 則FD的長為( )
A.3B.C.D.
【答案】C
【解析】
根據(jù)點E是AD的中點以及翻折的性質可以求出AE=DE=EG,然后利用“HL”證明△EDF和△EGF全等,根據(jù)全等三角形對應邊相等可證得DF=GF;設FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式進行計算即可得解.
∵E是AD的中點,
∴AE=DE,
∵△ABE沿BE折疊后得到△GBE
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
設DF=x,則BF=6+x,CF=6-x,
在Rt△BCF中,102+(6-x)2=(6+x)2,
解得x=.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線y=kx+b(k>0)和x軸上,已知點B1(1,1),B2(3,2),則B5的坐標是_____________ 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為2, 邊在軸上, 的中點與原點重合,過定點與動點的直線記作.
(1)若的解析式為,判斷此時點是否在直線上,并說明理由;
(2)當直線與邊有公共點時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績?yōu)闃颖,?/span>A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:
說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下
(1)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是 ;
(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是 ;
(3)請把條形統(tǒng)計圖補充完整;
(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重慶市第八中學校為給學生營造良好舒適的休息環(huán)境,決定改造校園內的—小花園,如圖是該花園的平面示意圖,它是由個正方形拼成的長方形用以種植六種不同的植物,已知中間最小的正方形的邊長是米,正方形、邊長相等.請根據(jù)圖形特點求出該花園的總面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】聰聰參加我市電視臺組織的“陽光杯”智力競答節(jié)目,答對最后兩道單選題就順利通關,第一道單選題有個選項,第二道單選題有4個選項,這兩道題聰聰都不會,不過聰聰還有兩個“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果聰聰兩次“求助”都在第一道題中使用,那么聰聰通關的概率是 .
(2)如果聰聰將每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年12月14日,中國教育學會第32次學術年會在山東濟南召開,某校選派16名教師前往參會,準備用一輛七座汽車(除司機外限載6人,從學校出發(fā)),送16位教師去高鐵站與機場,其中11位教師準備一起到學校正東方向25千米處的機場,另外5位教師準備一起到學校正東方向15千米處的高鐵站,其中去機場的老師中有6人因工作需要需先趕去機場,已知這輛汽車的平均速度為45千米/小時,教師步行的平均速度為5千米/小時.(注:不計教師上、下車時間,教師上車后,中途不下車,汽車到達目的地后立即沿原路返回)
(1)求汽車送第一批教師到達機場所用的時間.
(2)若只有這輛汽車送這16位教師去目的地后返回學校,請設計一種方案使該車所用總時間最短,并求出這個最短時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A順時針旋轉得到△ADE(點B,C的對應點分別是D,E),當點E在BC邊上時,連接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com