【題目】已知,△ABC中,AC=BC,∠ACB=90°,D為AB的中點(diǎn),若E在直線AC上任意一點(diǎn),DF⊥DE,交直線BC于F點(diǎn).G為EF的中點(diǎn),延長(zhǎng)CG交AB于點(diǎn)H.
(1)若E在邊AC上. ①試說明DE=DF;
②試說明CG=GH;
(2)若AE=3,CH=5.求邊AC的長(zhǎng).
【答案】
(1)解:①連接CD,
∵∠ACB=90°,D為AB的中點(diǎn),AC=BC,
∴CD=AD=BD,
又∵AC=BC,
∴CD⊥AB,
∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,
∵DF⊥DE,
∴∠EDF=∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中
∴△ADE≌△CDF,
∴DE=DF.
②連接DG,
∵∠ACB=90°,G為EF的中點(diǎn),
∴CG=EG=FG,
∵∠EDF=90°,G為EF的中點(diǎn),
∴DG=EG=FG,
∴CG=DG,
∴∠GCD=∠CDG
又∵CD⊥AB,
∴∠CDH=90°,
∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,
∴∠GHD=∠HDG,
∴GH=GD,
∴CG=GH.
(2)解:如圖,當(dāng)E在線段AC上時(shí),
∵CG=GH=EG=GF,
∴CH=EF=5,
∵△ADE≌△CDF,
∴AE=CF=3,
∴在Rt△ECF中,由勾股定理得: ,
∴AC=AE+EC=3+4=7;
如圖,當(dāng)E在線段CA延長(zhǎng)線時(shí),
AC=EC﹣AE=4﹣3=1,
綜合上述AC=7或1.
【解析】(1)①連接CD,推出CD=AD,∠CDF=∠ADE,∠A=∠DCB,證△ADE≌△CDF即可;②連接DG,根據(jù)直角三角形斜邊上中線求出CG=EG=GF=DG,推出∠GCD=∠GDC,推出∠GDH=∠GHD,推出DG=GH即可;(2)求出EF=5,根據(jù)勾股定理求出EC,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
(1) 取點(diǎn)M(1,0),則點(diǎn)M到直線l: 的距離為_________,取直線與直線l平行,則兩直線距離為_________.
(2) 已知點(diǎn)P為拋物線y=x2-4x的x軸上方一點(diǎn),且點(diǎn)P到直線l: 的距離為,求點(diǎn)P的坐標(biāo).
(3) 若直線y=kx+m與拋物線y=x2-4x相交于x軸上方兩點(diǎn)A、B(A在B的左邊),且∠AOB=90°,求點(diǎn)P(2,0)到直線y=kx+m的距離的最大時(shí)直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=-1,且過點(diǎn)(-3,0).下列說法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;則其中說法正確的是( ).
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)方形的周長(zhǎng)為10,它的長(zhǎng)是a,那么它的寬是( )
A. 10﹣a B. 10﹣2a C. 5﹣a D. 5﹣2a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】)在信宜市某“三華李”種植基地有A,B兩個(gè)品種的樹苗出售,已知A種比B種每株多2元,買1株A種樹苗和2株B種樹苗共需20元.
(1)問A,B兩種樹苗每株分別是多少元?
(2)為擴(kuò)大種植,某農(nóng)戶準(zhǔn)備購買A,B兩種樹苗共360株,且A種樹苗數(shù)量不少于B種數(shù)量的一半,請(qǐng)求出費(fèi)用最省的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,∠A、∠B的度數(shù)之比為5∶4,則∠C等于( )
A. 60° B. 80° C. 100° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)圖填空:
(1)如圖①,△ABE,△ACD都是等邊三角形,若CE=6,則BD的長(zhǎng)=;
(2)如圖②,△ABC中,∠ABC=30°,AB=3,BC=4,D是△ABC外一點(diǎn),且△ACD是等邊三角形,則BD的長(zhǎng)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是圓錐(如圖1)底面的直徑,P是圓錐的頂點(diǎn),此圓錐的側(cè)面展開圖如圖2所示.一只螞蟻從A點(diǎn)出發(fā),沿著圓錐側(cè)面經(jīng)過PB上一點(diǎn),最后回到A點(diǎn).若此螞蟻所走的路線最短,那么M,N,S,T(M,N,S,T均在PB上)四個(gè)點(diǎn)中,它最有可能經(jīng)過的點(diǎn)是( )
A.M
B.N
C.S
D.T
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com