如圖,矩形ABCD(點A在第一象限)與x軸的正半軸相交于M,與y的負半軸相交于N,AB∥x軸,反比例函數(shù)的圖象y=過A、C兩點,直線AC與x軸相交于點E、與y軸相交于點F.
(1)若B(-3,3),直線AC的解析式為y=ax+b.
①求a的值;
②連接OA、OC,若△OAC的面積記為S△OAC,△ABC的面積記為S△ABC,記S=S△ABC-S△OAC,問S是否存在最小值?若存在,求出其最小值;若不存在,請說明理由.
(2)AE與CF是否相等?請證明你的結論.

【答案】分析:(1)①由于四邊形ABCD是矩形,且AB∥x軸,可根據(jù)B的坐標,表示出A、C的坐標,將它們分別代入直線AC的解析式中,消去b后即可求得a的值;
②由于四邊形ABCD是矩形,且AC是矩形的對角線,則△ABC和△ACD的面積相等,因此△ABC、△AOC的面積差即為△ACD、△AOC的面積差,那么由△OAM、△OCN以及矩形OMDN的面積和即可求得S、k的函數(shù)關系式,根據(jù)自變量的取值范圍及函數(shù)的性質即可判斷出S是否具有最小值.
(2)連接MN,設AB、BC與坐標軸的交點分別為P、Q,易證得矩形APOM和矩形CQON的面積相等,那么DN•AD=DM•CD,將此式化為比例式,即可證得△DMN∽△DAC,根據(jù)相似三角形得到的等角,即可判定MN∥AC,由此可證得四邊形AFNM、四邊形CEMN都是平行四邊形,即可得到CE=AF=MN,由此可證得AE=CF.
解答:解:(1)①∵四邊形ABCD是矩形,且AB∥x軸,B(-3,3),
∴A(,3)、C(-3,-).
∵y=ax+b經(jīng)過A、C兩點,
,消去b得:(+3)a=+3.
∵k>0,故+3≠0,∴a=1.
②S=S△ABC-S△OAC=S△ACD-S△OAC=S△AOM+S△CON+S矩形ONDM,
∴S=++=(k+2-
∴當k>-時,S隨k的增大而增大,
由于k>0,故k沒有最小值,S也沒有最小值.

(2)AE=CF,理由如下:
連接MN,設AB與y軸的交點為P,BC與x軸的交點為Q;
則S矩形APOM=S矩形CQON=k,
∴DN•AD=DM•CD,即,
又∵∠D=∠D,
∴△DNM∽△DCA,得∠DNM=∠DCA,
∴MN∥AC;
又∵AD∥y軸,故四邊形AFNM是平行四邊形,
同理四邊形CNME是平行四邊形,
∴CE=MN=AF,故AE=CF.
點評:此題是反比例函數(shù)的綜合題,涉及到函數(shù)圖象交點坐標的求法、圖形面積的求法、矩形的性質、二次函數(shù)的應用以及平行四邊形、相似三角形的判定和性質,綜合性強,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,矩形ABCD中,AC與BD相交于點O,BE⊥AC于E,CF⊥BD于F.
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•武漢)如圖,矩形ABCD中,點E在邊AB上,將矩形ABCD沿直線DE折疊,點A恰好落在邊BC的點F處.若AE=5,BF=3,則CD的長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃岡)如圖,矩形ABCD中,AB=4,BC=3,邊CD在直線l上,將矩形ABCD沿直線l作無滑動翻滾,當點A第一次翻滾到點A1位置時,則點A經(jīng)過的路線長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)若△PBQ的面積為18cm2,求運動時間;
(3)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD的邊AB、BC的長分別為4
3
cm和2
6
cm,E、F、G、H分別是矩形各邊的中點,求四邊形EFGH的周長和面積.

查看答案和解析>>

同步練習冊答案