【題目】如圖,⊙O的半徑為5,弦AB長為8,過AB的中點(diǎn)E有一動(dòng)弦CD(點(diǎn)C只在弦AB所對(duì)的劣弧上運(yùn)動(dòng),且不與A、B重合),設(shè)CE=x,ED=y,下列圖象中能夠表示y與x之間函數(shù)關(guān)系的是( )

A.
B.
C.
D.

【答案】C
【解析】解:連接AC、BD,連接OA、OE.

∵AE=EB,

∴OE⊥AB,

∴EO= =3,

∴2≤x<4,

∵∠A=∠D,∠C=∠B,

∴△AEC∽△DEB,

= ,

= ,

∴y= (2≤x<4)

∴圖象是反比例函數(shù),

所以答案是:C

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E,FG,H分別是四邊形ABCD的邊AB,BC,CDAD的中點(diǎn).

1)探究1:連接對(duì)角線AC,BD由三角形中位線定理及平行四邊形的判定定理易得四邊形EFGH (不需要證明);

2)探究2:觀察猜想:

①當(dāng)四邊形ABCD的對(duì)角線ACBD滿足條件 時(shí),四邊形EFGH是菱形;

②當(dāng)四邊形ABCD的對(duì)角線AC,BD滿足條件 時(shí),四邊形EFGH為矩形.

3)探究3:當(dāng)四邊形ABCD滿足什么條件時(shí),四邊形EFGH為正方形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN是等邊三角形,直線AN,MC交于點(diǎn)E,直線BM,CN交于點(diǎn)F.

(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,其他條件不變,在(2)中畫出符合要求的圖形,并判斷(1)(2)題中的兩結(jié)論是否依然成立.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如圖所示放置,點(diǎn)A1,A2,A3,C1,C2,C3,分別在直線y=x+1x軸上,則點(diǎn)B2020的縱坐標(biāo)是_____,點(diǎn)Bn的縱坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.

(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.

(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;

(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船由A港沿北偏東60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);

2)確定C港在A港的什么方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織教師為地震救災(zāi)捐款,分6個(gè)工會(huì)小組進(jìn)行統(tǒng)計(jì),其中第6工會(huì)小組尚未統(tǒng)計(jì)在內(nèi),如圖:

1)求前5個(gè)工會(huì)小組捐款金額的眾數(shù)、中位數(shù)和平均數(shù);

2)若全部6個(gè)小組的捐款平均數(shù)為2750元,求第6小組的捐款金額,并補(bǔ)全統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)把以下證明過程補(bǔ)充完整:

已知:如圖,A=F,C=D.點(diǎn)B,E分別在線段AC,DF上,對(duì)1=2進(jìn)行說理.

理由:∵∠A=F(已知)

______FD ______

∴∠D=______(兩直線平行,內(nèi)錯(cuò)角相等)

∵∠C=D(已知)

______=C(等量代換)

____________(同位角相等,兩直線平行)

∴∠1=3______

∵∠2=3______

∴∠1=2(等量代換).

查看答案和解析>>

同步練習(xí)冊(cè)答案