【題目】如圖,正方形中,,,交于點.若,分別是邊,上的動點,且,則周長的最小值是__________.
【答案】
【解析】
根據(jù)正方形的對角線互相平分且相等可得AO=BO,∠AOB=90°,對角線平分一組對角可得∠OAE=∠OBF,再根據(jù)AE=BF,然后利用“SAS”證明△AOE和△BOF全等,根據(jù)全等三角形對應(yīng)角相等可得∠AOE=∠BOF,可得∠EOF=90°,然后利用勾股定理列式計算即可得解.
解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,
∵點E、F的速度相等,
∴AE=BF,
在△AOE和△BOF中,
,
∴△AOE≌△BOF(SAS),
∴∠AOE=∠BOF,
∴∠AOE+∠BOE=90°,
∴∠BOF+∠BOE=90°,
∴∠EOF=90°,
在Rt△BEF中,設(shè)AE=x,則BF=x,BE=2-x,
EF=.
∴當(dāng)x=1時,EF有最小值為.
∴OE=OF=1.
∴△OEF周長的最小值=.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE丄AB,垂足為D,EF//AC,
(1)求的度數(shù);
(2)連接BE,若BE同時平分和,問EF與BF垂直嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AB,M,N是線段EF的兩個動點,且MN=EF,若把該正方形紙片卷成一個圓柱,使點A與點B重合,若底面圓的直徑為6cm,則正方形紙片上M,N兩點間的距離是____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:兩個等腰直角三角形()邊長分別為a和b()如圖放置在一起,連接AD,
(1)求陰影部分()的面積
(2)如果有一個點正好位于線段的中點,連接.得到,求的面積
(3)(2)中的三角形比(1)中的面積大還是小,大(。┒嗌?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(6x-1)2=25;
(2)x2-2x=2x-1;
(3)x2-x=2;
(4)x(x-7)=8(7-x).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-2,0),(x0,0),1<x0<2,與y軸的負(fù)半軸相交,且交點在(0,-2)的上方,下列結(jié)論:
①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正確結(jié)論是 _________(填正確序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)省空間,家里的飯碗一般是豎直擺放的,如果只飯碗(形狀、大小相同)豎直擺放的高度為只飯碗豎直擺放的高度為.如圖所示,小穎家的碗櫥每格的高度為則一摞碗豎直放人櫥柜時,每格最多能放________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的直徑為,在圓上位于直徑的異側(cè)有定點和動點,已知,點在半圓弧上運動(不與、重合),過作的垂線交的延長線于點.
()求證: .
()當(dāng)點運動到弧中點時,求的長.
()當(dāng)點運動到什么位置時, 的面積最大?并求這個最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com