【題目】在東西方向的海岸線(xiàn)l上有一長(zhǎng)為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀(guān)察站A.某時(shí)刻測(cè)得一艘勻速直線(xiàn)航行的輪船位于A的北偏西30°,且與A相距40km的B處;經(jīng)過(guò)1小時(shí)20分鐘,又測(cè)得該輪船位于A的北偏東60°,且與A相距km的C處.
(1)求該輪船航行的速度(保留精確結(jié)果);
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請(qǐng)說(shuō)明理由.
【答案】(1)12(千米/小時(shí)).(2)故輪船能夠正好行至碼頭MN靠岸.
【解析】試題分析:(1)根據(jù)∠1=30°,∠2=60°,可知△ABC為直角三角形.根據(jù)勾股定理解答.
(2)延長(zhǎng)BC交l于T,比較AT與AM、AN的大小即可得出結(jié)論.
試題解析:(1)∵∠1=30°,∠2=60°,
∴△ABC為直角三角形.
∵AB=40km,AC=km,
∴BC=(km).
∵1小時(shí)20分鐘=80分鐘,1小時(shí)=60分鐘,
∴×60=12(千米/小時(shí)).
(2)能.
理由:作線(xiàn)段BR⊥AN于R,作線(xiàn)段CS⊥AN于S,延長(zhǎng)BC交l于T.
∵∠2=60°,
∴∠4=90°﹣60°=30°.
∵AC=8(km),
∴CS=8sin30°=4(km).
∴AS=8cos30°=8×=12(km).
又∵∠1=30°,
∴∠3=90°﹣30°=60°.
∵AB=40km,
∴BR=40sin60°=20(km).
∴AR=40×cos60°=40×=20(km).
易得,△STC∽△RTB,
所以,
.
解得:ST=8(km).
所以AT=12+8=20(km).
又因?yàn)?/span>AM=19.5km,MN長(zhǎng)為1km,∴AN=20.5km,
∵19.5<AT<20.5
故輪船能夠正好行至碼頭MN靠岸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)將組織七年級(jí)學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車(chē)租賃公司洽談租車(chē)事宜.
(1)兩同學(xué)向公司經(jīng)理了解租車(chē)的價(jià)格,公司經(jīng)理對(duì)他們說(shuō):“公司有45座和60座兩種型號(hào)的客車(chē)可供租用,60座的客車(chē)每輛每天的租金比45座的貴100元.”王老師說(shuō):“我們學(xué)校八年級(jí)昨天在這個(gè)公司租了5輛45座和2輛60座的客車(chē),一天的租金為1600元,你們能知道45座和60座的客車(chē)每輛每天的租金各是多少元嗎”甲、乙兩同學(xué)想了一下,都說(shuō)知道了價(jià)格.
聰明的你知道45座和60座的客車(chē)每輛每天的租金各是多少元嗎?
(2)公司經(jīng)理問(wèn):“你們準(zhǔn)備怎樣租車(chē)”,甲同學(xué)說(shuō):“我的方案是只租用45座的客車(chē),可是會(huì)有一輛客車(chē)空出30個(gè)座位”;乙同學(xué)說(shuō)“我的方案只租用60座客車(chē),正好坐滿(mǎn)且比甲同學(xué)的方案少用兩輛客車(chē)”,王老師在﹣旁聽(tīng)了他們的談話(huà)說(shuō):“從經(jīng)濟(jì)角度考慮,還有別的方案嗎”?如果是你,你該如何設(shè)計(jì)租車(chē)方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,AB=CD,點(diǎn)E、F在BC上,且BF=CE.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)A(﹣1,0)、B(4,0),拋物線(xiàn)y=ax2+bx﹣2(a≠0)過(guò)點(diǎn)A,B,頂點(diǎn)為C,點(diǎn)P(m,n)(n<0)為拋物線(xiàn)上一點(diǎn).
(1)求拋物線(xiàn)的解析式和頂點(diǎn)C的坐標(biāo);
(2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;
(3)若m>,當(dāng)∠APB為直角時(shí),將該拋物線(xiàn)向左或向右平移t(0<t<)個(gè)單位,點(diǎn)C、P平移后對(duì)應(yīng)的點(diǎn)分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長(zhǎng)最短?若存在,求t的值并說(shuō)明拋物線(xiàn)平移的方向;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列語(yǔ)句畫(huà)圖:
(1)畫(huà)∠AOB=120°;
(2)畫(huà)∠AOB的角平分線(xiàn)OC;
(3)反向延長(zhǎng)OC得射線(xiàn)OD;
(4)分別在射線(xiàn)OA、OB、OD上畫(huà)線(xiàn)段OE=OF=OG=2cm;
(5)連接EF、EG、FG;
(6)你能發(fā)現(xiàn)EF、EG、FG有什么關(guān)系?∠EFG、∠EGF、∠GEF有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家,他60歲時(shí)完成的《直指算法綜宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤(pán)用法,書(shū)中有如下問(wèn)題:一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),小僧三人分一個(gè),大小和尚得幾丁,意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,則小和尚有__________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱(chēng)軸是直線(xiàn) x=1,下列結(jié)論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線(xiàn),AE∥BC,BE交AD于點(diǎn)F,且AF=DF.
(1)求證:△AFE≌ODFB;
(2)求證:四邊形ADCE是平行四邊形;
(3)當(dāng)AB、AC之間滿(mǎn)足什么條件時(shí),四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A. B兩地果園分別有蘋(píng)果30噸和40噸,C. D兩地的農(nóng)貿(mào)市場(chǎng)分別需求蘋(píng)果20噸和50噸。已知從A. B兩地到C. D兩地的運(yùn)價(jià)如表:
(1)填空:若從A果園運(yùn)到C地的蘋(píng)果為10噸,則從A果園運(yùn)到D地的蘋(píng)果為___噸,從B果園運(yùn)到C地的蘋(píng)果為___噸,從B果園運(yùn)到D地的蘋(píng)果為___噸,總運(yùn)輸費(fèi)為___元;
(2)如果總運(yùn)輸費(fèi)為750元時(shí),那么從A果園運(yùn)到C地的蘋(píng)果為多少?lài)?/span>?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com