【題目】已知多項(xiàng)式ax5+bx3+4,當(dāng)x=1時(shí),值為5,那么多項(xiàng)式ax4+bx2-4,當(dāng)x=-1時(shí)的值為(   )

A. 5 B. -5 C. 3 D. -3

【答案】D

【解析】

首先把x=1代入多項(xiàng)式ax5+bx3+4,整理成關(guān)于a、b的等式,再把x=-1代入,觀察兩個(gè)式子的聯(lián)系,進(jìn)一步求得數(shù)值即可.

x=1時(shí),ax5+bx3+4=5,

a+b+4=5,

所以a+b=1,

當(dāng)x=-1時(shí),ax4+bx2-4=a+b-4=1-4=-3,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)y=﹣5x+1,下列結(jié)論:

它的圖象必經(jīng)過點(diǎn)(﹣1,5

它的圖象經(jīng)過第一、二、三象限

當(dāng)x1時(shí),y0

④y的值隨x值的增大而增大,

其中正確的個(gè)數(shù)是(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=x2﹣2x向下平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,則平移后的拋物線相應(yīng)的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+b不經(jīng)過第三象限,則k、b應(yīng)滿足( )
A.k>0,b<0
B.k<0,b>0
C.k<0 b<0
D.k<0,b≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)國(guó)慶節(jié)搞促銷活動(dòng),購物不超過200元不給優(yōu)惠,超過200(不含200元)元而不足500元,所有商品按購物價(jià)優(yōu)惠10%,超過500元的,其中500元按9折優(yōu)惠,超過的部分按8折優(yōu)惠,A,B兩個(gè)商品價(jià)格分別為180元,550元。

(1) 某人第一次購買一件A商品,第二次購買一件B商品,實(shí)際共付款多少元?

(2) 若此人一次購物購買A,B商品各一件,則實(shí)際付款多少錢?

(3) 國(guó)慶期間,某人在該商場(chǎng)兩次購物分別付款180元和550元,如果他合起來一次性購買同樣的商品,還可節(jié)約多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A表示﹣1,則與A距離3個(gè)單位長(zhǎng)度的點(diǎn)B表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:點(diǎn)A,B在數(shù)軸上分別表示有理數(shù)。A,B兩點(diǎn)之間的距離表示為.當(dāng)A,B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1所示, ;當(dāng)A,B兩點(diǎn)都不在原點(diǎn)時(shí),分三種情況,情況一:如圖2所示,點(diǎn)A,B都在原點(diǎn)的右側(cè), ;情況二:如圖3所示,點(diǎn)A,B都在原點(diǎn)左側(cè), ;情況三:如圖4所示,點(diǎn)A,B在原點(diǎn)的兩邊, ;綜上,數(shù)軸上A,B之間的距離.

回答下列問題:(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是________,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是____________,數(shù)軸上表示3和-1的兩點(diǎn)之間的距離是________.

(2)數(shù)軸上表示和-1的兩點(diǎn)A,B之間的距離是________,如果=2,那么為_______.

(3)當(dāng)取最小值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為自變量的二次函數(shù)的圖象不經(jīng)過第三象限,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)BE分別在AC、DF上,AF分別交BDCE于點(diǎn)M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案