【題目】青青草原上,灰太狼每天都想著如何抓羊,而且是屢敗屢試,永不言棄.(如圖所示)一天,灰太狼在自家城堡頂部A處測得懶羊羊所在地B處的俯角為60°,然后下到城堡的C處,測得B處的俯角為30°.已知AC=50米,若灰太狼以5/秒的速度從城堡底部D處出發(fā),幾秒鐘后能抓到懶羊羊?(結(jié)果保留根號)

【答案】灰太狼秒鐘后能抓到懶羊羊

【解析】

根據(jù)已知得出AC=BC,進而利用解直角三角形得出BD的長進一步可得到結(jié)果.

解;在RtBCD

∵∠BCD=90-30=60,∠CBD=30

AC=BC=50m ,

RtBCD

sin60=

BD=BCsin60=m

設(shè)追趕時間為ts,由題意得:5t=

t=s

答:灰太狼秒鐘后能抓到懶羊羊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點,過定點 的直線:與拋物線交于兩點,點在點的右側(cè),過點軸的垂線,垂足為.

1)求拋物線的解析式;

2)設(shè)點x軸上運動,連接,作的垂直平分線與過點Dx軸的垂線交于點,判斷點是否在拋物線上,并證明你的判斷;

3)若,設(shè)的中點為,拋物線上是否存在點,使得周長最小,若存在求出周長的最小值,若不存在說明理由;

4)若,在拋物線上是否存在點,使得的面積為,若存在求出點的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C90°,AC4,BC3,如圖1,四邊形DEFGABC的內(nèi)接正方形,則正方形DEFG的邊長為_____.如圖2,若三角形ABC內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于ABC,則正方形的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某段地鐵工程由甲、乙兩工程隊合作天可完成.若單獨施工,甲工程隊比乙工程隊多用天.

求甲、乙兩工程隊單獨完成此項工程各需要多少天?

如果甲工程隊施工每天需付施工費萬元,乙工程隊施工每天需付施工費萬元,甲工程隊最多要單獨施工多少天后,再由甲.乙兩工程隊合作施工完成剩下的工程,才能使施工費不超過萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年平昌冬奧會在29日到25日在韓國平昌郡舉行,為了調(diào)查中學(xué)生對冬奧會比賽項目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.

對冬奧會了解程度的統(tǒng)計表

對冬奧會的了解程度

百分比

A非常了解

10%

B比較了解

15%

C基本了解

35%

D不了解

n%

(1)n=   ;

(2)扇形統(tǒng)計圖中,D部分扇形所對應(yīng)的圓心角是   ;

(3)請補全條形統(tǒng)計圖;

(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展冬奧會的知識競賽,某班要從非常了解程度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛?cè),請用畫樹狀圖或列表的方法說明這個游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,P為邊AB上一點

(1) 如圖1,若∠ACPB,求證:AC2AP·AB;

(2) MCP的中點,AC2,

如圖2,若∠PBMACP,AB3,求BP的長;

如圖3,若∠ABC45°ABMP60°,直接寫出BP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一驢友分三次從地出發(fā)沿著不同線路(線、線、線)去地,在每條線路上行進的方式都分為穿越叢林、涉水行走和攀登這三種.他涉水行走4小時的路程與攀登6小時的路程相等;線、線路程相等,都比線路程多線總時間等于線總時間的一半;他用了3小時穿越叢林、2小時涉水行走和2小時攀登走完線;在線中穿越叢林、涉水行走和攀登所用時間分別比線上升了.若他用了小時穿越叢林、小時涉水行走和小時攀登走完線,且都為正整數(shù),則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當(dāng)時,的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是等邊三角形內(nèi)一點,將線段繞點順時針旋轉(zhuǎn)60°得到線段,連接.若,則四邊形的面積為____.

查看答案和解析>>

同步練習(xí)冊答案