【題目】如圖, 是等邊三角形內(nèi)一點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到線段,連接.若,則四邊形的面積為____.
【答案】24+9.
【解析】試題分析:如圖,連結(jié)PQ,根據(jù)等邊三角形的性質(zhì)得∠BAC=60°,AB=AC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AP=PQ=6,∠PAQ=60°,即可判定△APQ為等邊三角形,所以PQ=AP=6;在△APC和△ABQ中,AB=AC,∠CAP=∠BAQ,AP=PQ,利用SAS判定△APC≌△ABQ,根據(jù)全等三角形的性質(zhì)可得PC=QB=10;在△BPQ中,已知PB2=82=64,PQ2=62,BQ2=102,即PB2+PQ2=BQ2,所以△PBQ為直角三角形,∠BPQ=90°,所以S四邊形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015羊年春晚在某網(wǎng)站取得了同時(shí)在線人數(shù)超14 000 000的驚人成績(jī),創(chuàng)下了全球單平臺(tái)網(wǎng)絡(luò)直播記錄,則14 000 000用科學(xué)記數(shù)法可表示為( 。
A.0.14×108
B.1.4×107
C.1.4×108
D.14×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知d=x4﹣2x3+x2﹣12x﹣8,則當(dāng)x2﹣2x﹣5=0時(shí),d的值為( )
A.22B.20C.38D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖作∠AOB的平分線方法如下:以O為圓心,任意長(zhǎng)為半徑畫弧交OA,OB于C,D,再分別以點(diǎn)C,D為圓心,以大于CD長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線OP.由作法得△OCP≌△ODP的根據(jù)是( )
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中錯(cuò)誤的是( 。
A. 三角形的內(nèi)角和等于180°
B. 三角形的外角和小于四邊形的外角和
C. 五邊形的內(nèi)角和等于540°
D. 正六邊形的一個(gè)內(nèi)角等于120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求證:無論m為何值時(shí),這個(gè)方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天晚上,身高1.6米的小明站在路燈下,發(fā)現(xiàn)自己的影子恰好是4塊地磚的長(zhǎng)(每塊地磚為邊長(zhǎng)0.5米的正方形).當(dāng)他沿著影子的方向走了4塊地磚時(shí),發(fā)現(xiàn)自己的影子恰好是5塊地磚的長(zhǎng),根據(jù)這個(gè)發(fā)現(xiàn),他就算出了路燈的高度,你知道他是怎么算的嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列結(jié)論:①CD=ED②AC+BE=AB ③∠BDE=∠BAC ④AD平分∠CDE ⑤S△ABD∶S△ACD=AB∶AC,其中正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com