如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
解:(1)∵OB=4,OE=2,
∴BE=2+4=6.
∵CE⊥x軸于點(diǎn)E,tan∠ABO===.
∴OA=2,CE=3.
∴點(diǎn)A的坐標(biāo)為(0,2)、點(diǎn)B的坐標(biāo)為C(4,0)、點(diǎn)C的坐標(biāo)為(﹣2,3).
設(shè)直線AB的解析式為y=kx+b,則,
解得.
故直線AB的解析式為y=﹣x+2.
設(shè)反比例函數(shù)的解析式為y=(m≠0),
將點(diǎn)C的坐標(biāo)代入,得3=,
∴m=﹣6.
∴該反比例函數(shù)的解析式為y=﹣.
(2)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得,
可得交點(diǎn)D的坐標(biāo)為(6,﹣1),
則△BOD的面積=4×1÷2=2,
△BOD的面積=4×3÷2=6,
故△OCD的面積為2+6=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
設(shè)平面區(qū)域是由雙曲線的兩條漸近線和拋物線的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(diǎn),則目標(biāo)函數(shù)的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。
A. B. C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,矩形ABCD中,OA在x軸上,OC在y軸上,且OA=2,AB=5,把△ABC沿著AC對(duì)折得到△AB′C,AB′交y軸于D點(diǎn),則B′
點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)如圖1是某個(gè)多面體的表面展開(kāi)圖.
①請(qǐng)你寫出這個(gè)多面體的名稱,并指出圖中哪三個(gè)字母表示多面體的同一點(diǎn);
②如果沿BC、GH將展開(kāi)圖剪成三塊,恰好拼成一個(gè)矩形,那么△BMC應(yīng)滿足什么條件?(不必說(shuō)理)
(2)如果將一個(gè)三棱柱的表面展開(kāi)圖剪成四塊,恰好拼成一個(gè)三角形,如圖2,那么該三棱柱的側(cè)面積與表面積的比值是多少?為什么?(注:以上剪拼中所有接縫均忽略不計(jì))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com