【題目】如圖,點(diǎn),的坐標(biāo)分別為,拋物線的頂點(diǎn)在線段上運(yùn)動(拋物線隨頂點(diǎn)一起平移),與軸交于兩點(diǎn)(的左側(cè)),點(diǎn)的橫坐標(biāo)最小值為-6,則點(diǎn)的橫坐標(biāo)最大值為(

A.-3B.1C.5D.8

【答案】B

【解析】

當(dāng)拋物線經(jīng)過A點(diǎn)時,與x軸的交點(diǎn)C的橫坐標(biāo)是最小值,所以把A點(diǎn)坐標(biāo)和C-6,0)代入可以a,再把B點(diǎn)坐標(biāo)代入,求出與x軸的交點(diǎn)就是D點(diǎn)的橫坐標(biāo)的最大值.

∵拋物線y=ax-m2+nA點(diǎn)時,與x軸的交點(diǎn)C的橫坐標(biāo)是最小值-4,

0=a-6+42+4

a=-1,

∵拋物線y=ax-m2+nB點(diǎn)時,與x軸的交點(diǎn)D的橫坐標(biāo)是最大值,

0=-1x+12+4,

x1=1x2=-3,

D的橫坐標(biāo)是1,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上OA兩點(diǎn)的距離為4,一動點(diǎn)PA點(diǎn)出發(fā)按以下規(guī)律跳動:第一次跳動到AO的中點(diǎn)A1處,第二次從A1點(diǎn)跳動到A1O的中點(diǎn)A2處,第三次從A2跳動到A2O的中點(diǎn)A3處按照這樣的規(guī)律,繼續(xù)跳動到點(diǎn)A4A5A6……Ann≥3,n是整數(shù))處那么線段A3O的長度為_________AnA的長度為_________ 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+x+2x軸于點(diǎn)A.BAB的右側(cè)),與y軸交于點(diǎn)C,D為第一象限拋物線上的動點(diǎn),則△ACD面積的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,D,EBC上,∠DAE=45°,為了探究BD,DE,CE之間的等量關(guān)系,現(xiàn)將△AECA順時針旋轉(zhuǎn)90°后成△AFB,連接DF,經(jīng)探究,你所得到的BD,DE,CE之間的等量關(guān)系式是 ;(無須證明)

(2)如圖2,在△ABC中,∠BAC=120°,AB=AC,D,EBC上,∠DAE=60°,∠ADE=45°,試仿照(1)的方法,利用圖形的旋轉(zhuǎn)變換,探究BD,DE,CE之間的等量關(guān)系,并證明你的結(jié)論.

      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,拋物線)與軸交于,兩點(diǎn),點(diǎn)在該拋物線上(點(diǎn)與,兩點(diǎn)不重合),如果的三邊滿足,則稱點(diǎn)為拋物線)的勾股點(diǎn).

1)求證:點(diǎn)是拋物線的勾股點(diǎn).

2)如圖2,已知拋物線)與軸交于兩點(diǎn),點(diǎn)是拋物線的勾股點(diǎn),求拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】安徽郎溪農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè).他準(zhǔn)備用長的木欄圍一個矩形的羊圈,為了節(jié)約材料同時要使矩形的面積最大,他利用了自家房屋一面長的墻,設(shè)計(jì)了如圖所示的一個矩形羊圈.

1)請你求出張大伯的矩形羊圈的面積;

2)請你判斷他的設(shè)計(jì)方案是否合理?如果合理,直接答合理;如果不合理又該如何設(shè)計(jì)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+c與直線yx交于(11)和(3,3)兩點(diǎn),現(xiàn)有以下結(jié)論:b24c0;3b+c+60當(dāng)x2+bx+c時,x2;當(dāng)1x3時,x2+b1x+c0,其中正確的序號是( 。

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為實(shí)數(shù))

1)當(dāng)時,若= ,則此函數(shù)是一次函數(shù);

2)若它是一個二次函數(shù),假設(shè),那么:

①當(dāng)時,的增大而減小,請判斷這個命題的真假并說明理由;

②它一定經(jīng)過哪個點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) ()的圖象如圖所示,分析下列四個結(jié)論:①;②;③;④.其中正確的結(jié)論有( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案