分析 (1)①根據(jù)題意作出圖形即可.②結(jié)論:AP=BN,AP⊥BN,只要證明△APO≌△BNO即可.
(2)在RT△CMS中,求出SM,SC即可解決問題.
解答 解:(1)①補(bǔ)全圖形如圖1所示,
②結(jié)論:AP=BN,AP⊥BN.
理由:延長NB交AP于H,交OP于K.
∵四邊形ABCD是正方形,
∴OA=OB,AO⊥BO,
∴∠1+∠2=90°,
∵四邊形OPMN是正方形,
∴OP=ON,∠PON=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
在△APO和△BNO中,
$\left\{\begin{array}{l}{OA=OB}\\{∠1=∠3}\\{OP=ON}\end{array}\right.$,
∴△APO≌△BNO,
∴AP=BN,∴∠4=∠5,
在△OKN中,∠5+∠6=90°,
∵∠7=∠6,
∴∠4+∠7=90°,
∴∠PHK=90°,
∴AP⊥BN.
(2)解題思路如下:
a.首先證明△APO≌△BNO,AP=BN,∠OPA=ONB.
b.作OT⊥AB于T,MS⊥BC于S,由題意可知AT=TB=1,
c.由∠APO=30°,可得PT=$\sqrt{3}$,BN=AP=$\sqrt{3}$+1,可得∠POT=∠MNS=60°.
d.由∠POT=∠MNS=60°,OP=MN,
可證,△OTP≌△NSM,
∴PT=MS=$\sqrt{3}$,
∴CN=BN-BC=$\sqrt{3}$-1,
∴SC=SN-CN=2-$\sqrt{3}$,
在RT△MSC中,CM2=MS2+SC2,
∴MC的長可求.
點(diǎn)評(píng) 本題考查四邊形綜合題、正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活應(yīng)用這些知識(shí)解決問題,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 對(duì)角線互相平分 | B. | 對(duì)角線互相垂直 | ||
C. | 對(duì)角線相等 | D. | 每條對(duì)角線平分一組對(duì)邊 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠D=60° | B. | ∠C+∠D=180° | C. | ∠A=120° | D. | ∠C+∠A=180° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com