【題目】如圖,在矩形ABCD中,AB10,AD6,EBC上一點(diǎn),把△CDE沿DE折疊,使點(diǎn)C落在AB邊上的F處,則CE的長(zhǎng)為_____

【答案】

【解析】

設(shè)CEx,則BE6x由折疊性質(zhì)可知,EFCExDFCDAB10,所以AF8BFABAF1082,在RtBEF中,BE2+BF2EF2,即(6x2+22x2,解得x

解:設(shè)CEx,則BE6x由折疊性質(zhì)可知,EFCEx,DFCDAB10,

RtDAF中,AD6,DF10

AF8,

BFABAF1082

RtBEF中,BE2+BF2EF2,

即(6x2+22x2

解得x,

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知,如圖,在平行四邊形ABCD中,E、F是對(duì)角線BD上的兩點(diǎn),且BFDE.求證:AECF;

2)已知,如圖,ABO的直徑,CAO相切于點(diǎn)A.連接COO于點(diǎn)D,CO的延長(zhǎng)線交O于點(diǎn)E.連接BE、BD,∠ABD30°,求∠EBO和∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的箱子里有四張外形相同的卡片卡片上分別標(biāo)有數(shù)字﹣11,35.摸出一張后,記下數(shù)字,再放回,搖勻后再摸出一張,記下數(shù)字.以第一次得到的放字為橫坐標(biāo),第二次得到的數(shù)字為縱坐標(biāo),得到一個(gè)點(diǎn)則這個(gè)點(diǎn).恰好在直線y=﹣x+4上的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD8AB4,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,連接BE、DF,以B為原點(diǎn)建立平面直角坐標(biāo)系,使BCBA邊分別在x軸和y軸的正半軸上.

1)試判斷四邊形BFDE的形狀,并說明理由;

2)求直線EF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+3x軸交于點(diǎn)A(﹣1,0),B30).

1)求拋物線的解析式;

2)過點(diǎn)D0)作x軸的平行線交拋物線于E,F兩點(diǎn),求EF長(zhǎng);

3)當(dāng)y時(shí),直接寫出x的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,PBC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;③△PMN為等邊三角形;當(dāng)∠ABC=45°時(shí),BN=PC.其中正確的個(gè)數(shù)是()

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種機(jī)器人都被用來搬運(yùn)某體育館室內(nèi)裝潢材料甲型機(jī)器人比乙型機(jī)器人每小時(shí)少搬運(yùn)30千克,甲型機(jī)器人搬運(yùn)600千克所用的時(shí)間與乙型機(jī)器人搬運(yùn)800千克所用的時(shí)間相同,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少千克?設(shè)甲型機(jī)器人每小時(shí)搬運(yùn)x千克,根據(jù)題意,可列方程為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:

1)寫出方程ax2+bx+c=0的兩個(gè)根;

2)寫出yx的增大而減小的自變量x的取值范圍;

3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EAD的中點(diǎn),連結(jié)BE,且BEACAC于點(diǎn)F

1)求證:△EAB∽△ABC;

2)若AD2,求AB的長(zhǎng);

3)在(2)的條件下,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案