【題目】在一個不透明的箱子里有四張外形相同的卡片卡片上分別標有數(shù)字﹣1,1,3,5.摸出一張后,記下數(shù)字,再放回,搖勻后再摸出一張,記下數(shù)字.以第一次得到的放字為橫坐標,第二次得到的數(shù)字為縱坐標,得到一個點則這個點.恰好在直線y=﹣x+4上的概率是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的弦,且AB⊥CD于E,F為上一點,BF交CD于G,點H在CD的延長線上,且FH=GH.
(1)求證:FH與⊙O相切.
(2)若FH=OA=5,FG=3,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新美蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國各地,已成為我區(qū)經(jīng)濟發(fā)展的重要項目。近年來它的蔬菜產(chǎn)值不斷增加,2013年蔬菜的產(chǎn)值是640萬元,2015年產(chǎn)值達到1000萬元。
(1)求2014年、2015年蔬菜產(chǎn)值的年平均增長率是多少?
(2)若2016年蔬菜產(chǎn)值繼續(xù)穩(wěn)步增長(即年增長率與前兩年的年增長率相同),那么請你估計2016年該公司的蔬菜產(chǎn)值將達到多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,動點D從點A出發(fā),沿線段AC以每秒1個單位的速度向終點C運動,動點E同時從點B出發(fā),以每秒2個單位的速度沿射線BC方向運動,當點D停止時,點E也隨之停止,連結(jié)DE,當C. D. E三點不在同一直線上時,以ED、EC我鄰邊作ECFD,設(shè)點D運動的時間為t(秒).
(1)用含t的代數(shù)式表示CE的長度。
(2)當F點落在△ABC的內(nèi)部時,求t的取值范圍。
(3)設(shè)ECFD的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式。
(4)當點F到Rt△ABC的一條直角邊的距離是到另一條直角邊距離的2倍時,直接寫出ECFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=135°,DH⊥AB于H,交對角線AC于E,過E作EF⊥AD于F.若△DEF的周長為2,則菱形ABCD的面積為( )
A.2B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對函數(shù)y=|x2﹣2x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整:
(1)自變量x的取值范圍取足全體實數(shù),x與y的幾組對應(yīng)值列表如下:其中m= .
x | …… | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | …… |
y | …… | 3 | m | 0 | 0.75 | 1 | 0.75 | 0 | 1.25 | 3 | …… |
(2)根括上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,現(xiàn)在畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出函數(shù)的一條性質(zhì) ;
(4)進一步探究函數(shù)圖象解決問題:
①方程|x2﹣2x|=有 個實數(shù)根;
②在(2)問的平面直角坐標系中畫出直線y=﹣x+1,根據(jù)圖象寫出方程|x2﹣2x|=﹣x+1的一個正數(shù)根約為 .(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本價為20元/千克,經(jīng)市場調(diào)查,每天銷售量y(千克)與銷售單價x(元/千克)之間的關(guān)系如圖所示,規(guī)定每千克售價不能低于30元,且不高于80元.
(1)求y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍.
(2)每天銷售量為135千克時,銷售單價為 元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,AD=6,E為BC上一點,把△CDE沿DE折疊,使點C落在AB邊上的F處,則CE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線y=x2﹣2(k﹣1)x+k2﹣k(k為常數(shù)).
(1)若拋物線在時有最低點,求k的值;(2)若拋物線經(jīng)過點(1,k2),求k的值;
(3)若拋物線經(jīng)過點(2k,y1)和點(2,y2),且y1>y2,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com