【題目】一客車一出租車分別從甲乙兩地相向而行同時出發(fā),設(shè)客車離甲地距離為y1千米,出租車離甲地距離為y2千米,兩車行駛的時間為x小時,y1、y2關(guān)于的函數(shù)圖象如圖所示:

1)根據(jù)圖象,直接寫出y1y2關(guān)于x的關(guān)系式;

2)求經(jīng)過多少小時,兩車之間的距離為120千米?

【答案】1y160x0x10),y2=﹣100x+6000x6);(2)經(jīng)過3小時或4.5小時,兩車之間的距離為120千米.

【解析】

1)根據(jù)圖象可知客車與出租車的行使速度以及甲乙兩地的路程,然后直接運用待定系數(shù)法就可以求出yy關(guān)于x的函數(shù)圖關(guān)系式;

2)根據(jù)題意分2種情況,根據(jù)客車和出租車行使的路程和等于他們的速度和乘以行使時間列方程解答即可.

1)設(shè)y1k1x,由圖可知,函數(shù)圖象經(jīng)過點(10,600),

10k1600,

解得:k160,

y160x0≤x≤10),

設(shè)y2k2x+b,由圖可知,函數(shù)圖象經(jīng)過點(0,600),(6,0),則

,解得

y2=﹣100x+6000≤x≤6);

2)設(shè)經(jīng)過x小時,兩車之間的距離為120千米,根據(jù)題意

兩車相遇前,兩車之間的距離為120千米,

60x+100x+120600

解得x3;

兩車相遇后,兩車之間的距離為120千米,

60x+100x120600

解得x4.5,

綜上所述,經(jīng)過3小時或4.5小時,兩車之間的距離為120千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點PBE=BC,PBCE交于點H,PGADBCF,交ABG,連接CP.下列結(jié)論:ACB=2APB;SPACSPAB=ACAB;BP垂直平分CEPCF=CPF.其中,正確的有( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五一”期間,文具店老板購進100只兩種型號的文具進行銷售,其進價和售價之間的關(guān)系如下表:

型號

進價(元/只)

售價(元/只)

A型

10

14

B型

15

22

(1)老板如何進貨,能使進貨款恰好為1350元?

(2)要使銷售文具所獲利潤不少于500元,那么老板最多能購進A型文具多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,CD平分∠ACBAB于點D,AEDCBC的延長線于點E,已知∠BAC32°,求∠E的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E是△ABC內(nèi)的兩點,AD平分∠BAC,∠EBC=E=60°.若BE=7cm,DE=2cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市經(jīng)銷一種銷售成本為每件40元的商品.據(jù)市場調(diào)查分析,如果按每件50元銷售,一周能售出500件,若銷售單價每漲1元,每周銷售量就減少10件.設(shè)銷售單價為每件x元(x≥50),一周的銷售量為y件.

(1)寫出yx的函數(shù)關(guān)系式.(標(biāo)明x的取值范圍)

(2)設(shè)一周的銷售利潤為S,寫出Sx的函數(shù)關(guān)系式,并確定當(dāng)單價在什么范圍內(nèi)變化時,利潤隨著單價的增大而增大?

(3)在超市對該種商品投入不超過10 000元的情況下,使得一周銷售利潤達到8 000元,銷售單價應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的圖像與x軸交于B,C兩點(BC的左側(cè)),與y軸交于點A。

(1)求出點A,B,C的坐標(biāo)。

(2)向右平移拋物線,使平移后的拋物線恰好經(jīng)過△ABC的外心,求出平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.

(1)求一次至少購買多少只計算器,才能以最低價購買?

(2)求寫出該文具店一次銷售x(x10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BC的直徑,點A上,點DCA的延長線上,,垂足為點EDE相交于點H,與AB相交于點過點A,與DE相交于點F

求證:AF的切線;

當(dāng),且時,求:的值;

如圖2,在的條件下,延長FABC相交于點G,若,求線段EH的長.

查看答案和解析>>

同步練習(xí)冊答案