【題目】如圖,的直徑,點(diǎn)上一點(diǎn),的平分線于點(diǎn),過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn)

1)求證:的切線;

2)過(guò)點(diǎn)于點(diǎn),連接.若,,求的長(zhǎng)度.

【答案】1)見(jiàn)解析;(2

【解析】

1)連接OD,由等腰三角形的性質(zhì)及角平分線的性質(zhì)得出∠ADO=∠DAE,從而ODAE,由DEBC得∠E90°,由兩直線平行,同旁內(nèi)角互補(bǔ)得出∠ODE90°,由切線的判定定理得出答案;
2)先由直徑所對(duì)的圓周角是直角得出∠ADB90°,再由OF1,BF2得出OB的值,進(jìn)而得出AFBA的值,然后證明DBF∽△ABD,由相似三角形的性質(zhì)得比例式,從而求得BD2的值,求算術(shù)平方根即可得出BD的值.

解:(1)連接OD,如圖:
OAOD
∴∠OAD=∠ADO
AD平分∠CAB,
∴∠DAE=∠OAD
∴∠ADO=∠DAE,
ODAE,
DEBC,
∴∠E90°
∴∠ODE180°E90°,
DE是⊙O的切線;

2)因為直徑,則

,

OB=3

∵∠ADB=DFB=90°, B=B

DBF∽△ABD

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定的等級(jí)標(biāo)準(zhǔn)為:90分及以上為優(yōu)秀,8089分為良好,6079分為及格,59分及以下為不及格.某校為了解七、八年級(jí)學(xué)生的體質(zhì)健康情況,現(xiàn)從兩年級(jí)中各隨機(jī)抽取10名同學(xué)進(jìn)行體質(zhì)健康檢測(cè),并對(duì)成績(jī)進(jìn)行分析.成績(jī)?nèi)缦拢?/span>

七年級(jí)

80

74

83

63

90

91

74

61

82

62

八年級(jí)

74

61

83

91

60

85

46

84

74

82

1)根據(jù)上述數(shù)據(jù),補(bǔ)充完成下列表格中序號(hào).

整理數(shù)據(jù):

分析數(shù)據(jù):

年級(jí)

平均數(shù)

眾數(shù)

中位數(shù)

七年級(jí)

_________

74

77

八年級(jí)

74

74

____________

2)該校目前七年級(jí)有300人,八年級(jí)有200人,試估計(jì)兩個(gè)年級(jí)體質(zhì)健康等級(jí)達(dá)到優(yōu)秀的學(xué)生共有多少人?

3)結(jié)合上述數(shù)據(jù)信息,你認(rèn)為哪個(gè)年級(jí)學(xué)生的體質(zhì)健康情況更好,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),交軸于點(diǎn)直線經(jīng)過(guò)點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn)交直線于點(diǎn)設(shè)點(diǎn)的橫坐標(biāo)為的值;

3是第一象限對(duì)稱軸右側(cè)拋物線上的一點(diǎn),連接拋物線的對(duì)稱軸上是否存在點(diǎn).使得相似,且為直角,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ymx+nm0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)yk0)的圖象交于A,B兩點(diǎn),點(diǎn)A在第一象限,縱坐標(biāo)為4,點(diǎn)B在第三象限,BMx軸,垂足為點(diǎn)MBMOM2

1)求反比例函數(shù)和一次函數(shù)的解析式.

2)連接OB,MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】構(gòu)建幾何圖形解決代數(shù)問(wèn)題是“數(shù)形結(jié)合”思想的重要性,在計(jì)算tan15°時(shí),如圖.在RtACB中,∠C90°,∠ABC30°,延長(zhǎng)CB使BDAB,連接AD,得∠D15°,所以tan15°.類比這種方法,計(jì)算tan22.5°的值為(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形具有不穩(wěn)定性,對(duì)于四條邊長(zhǎng)確定的四邊形.當(dāng)內(nèi)角度數(shù)發(fā)生變化時(shí),其形狀也會(huì)隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABCD.若DAB30°,則菱形ABCD的面積與正方形ABCD的面積之比是( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)承接了27000件產(chǎn)品的生產(chǎn)任務(wù),計(jì)劃安排甲、乙兩個(gè)車間的共50名工人,合作生產(chǎn)20天完成.已知甲、乙兩個(gè)車間利用現(xiàn)有設(shè)備,工人的工作效率為:甲車間每人每天生產(chǎn)25件,乙車間每人每天生產(chǎn)30件.

1)求甲、乙兩個(gè)車間各有多少名工人參與生產(chǎn)?

2)為了提前完成生產(chǎn)任務(wù),該企業(yè)設(shè)計(jì)了兩種方案:

方案一 甲車間租用先進(jìn)生產(chǎn)設(shè)備,工人的工作效率可提高20%,乙車間維持不變.

方案二 乙車間再臨時(shí)招聘若干名工人(工作效率與原工人相同),甲車間維持不變.

設(shè)計(jì)的這兩種方案,企業(yè)完成生產(chǎn)任務(wù)的時(shí)間相同.

①求乙車間需臨時(shí)招聘的工人數(shù);

②若甲車間租用設(shè)備的租金每天900元,租用期間另需一次性支付運(yùn)輸?shù)荣M(fèi)用1500元;乙車間需支付臨時(shí)招聘的工人每人每天200元.問(wèn):從新增加的費(fèi)用考慮,應(yīng)選擇哪種方案能更節(jié)省開(kāi)支?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(性質(zhì)探究)

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)OAE平分∠BAC,交BC于點(diǎn)E.作DFAE于點(diǎn)H,分別交AB,AC于點(diǎn)F,G

1)判斷△AFG的形狀并說(shuō)明理由.

2)求證:BF=2OG

(遷移應(yīng)用)

3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時(shí),求的值.

(拓展延伸)

4)若DF交射線AB于點(diǎn)F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時(shí),請(qǐng)直接寫(xiě)出tanBAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊AOx軸的負(fù)半軸上,邊OBy軸的負(fù)半軸上.且AO12,OB9.拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A和點(diǎn)B

1)求拋物線的表達(dá)式;

2)在第二象限的拋物線上找一點(diǎn)M,連接AM,BMAB,當(dāng)ABM面積最大時(shí),求點(diǎn)M的坐標(biāo);

3)點(diǎn)D是線段AO上的動(dòng)點(diǎn),點(diǎn)E是線段BO上的動(dòng)點(diǎn),點(diǎn)F是射線AC上的動(dòng)點(diǎn),連接EF,DF,DEBD,且EF是線段BD的垂直平分線.當(dāng)CF1時(shí).

①直接寫(xiě)出點(diǎn)D的坐標(biāo)   ;

②若DEF的面積為30,當(dāng)拋物線y=﹣x2+bx+c經(jīng)過(guò)平移同時(shí)過(guò)點(diǎn)D和點(diǎn)E時(shí),請(qǐng)直接寫(xiě)出此時(shí)的拋物線的表達(dá)式   

查看答案和解析>>

同步練習(xí)冊(cè)答案