分析 (1)欲證明CB是⊙O的切線,只要證明BC⊥OB,可以證明△CDO≌△CBO解決問題.
(2)首先證明S陰=S扇形ODF,然后利用扇形面積公式計(jì)算即可.
解答 (1)證明:連接OD,與AF相交于點(diǎn)G,
∵CE與⊙O相切于點(diǎn)D,
∴OD⊥CE,
∴∠CDO=90°,
∵AD∥OC,
∴∠ADO=∠DOC,∠DAO=∠BOC,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DOC=∠BOC,
在△CDO和△CBO中,\
$\left\{\begin{array}{l}{CO=CO}\\{∠DOC=∠BOC}\\{OD=OB}\end{array}\right.$,
∴△CDO≌△CBO,
∴∠CBO=∠CDO=90°,
∴CB是⊙O的切線.
(2)由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,
∵∠ECB=60°,
∴∠DCO=∠BCO=$\frac{1}{2}$∠ECB=30°,
∴∠DOC=∠BOC=60°,
∴∠DOA=60°,
∵OA=OD,
∴△OAD是等邊三角形,
∴AD=OD=OF,∵∠GOF=∠ADO,
在△ADG和△FOG中,
$\left\{\begin{array}{l}{∠GOF=∠ADG}\\{∠FGO=∠AGD}\\{AD=OF}\end{array}\right.$,
∴△ADG≌△FOG,
∴S△ADG=S△FOG,
∵AB=6,
∴⊙O的半徑r=3,
∴S陰=S扇形ODF=$\frac{60π•{3}^{2}}{360}$=$\frac{3}{2}$π.
點(diǎn)評(píng) 本題考查切線的性質(zhì)和判定、扇形的面積公式,記住切線的判定方法和性質(zhì)是解決問題的關(guān)鍵,學(xué)會(huì)把求不規(guī)則圖形面積轉(zhuǎn)化為求規(guī)則圖形面積,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
編號(hào) | 1 | 2 | 3 | 4 | 5 | 方差 | 平均成績(jī) |
得分 | 38 | 34 | ■ | 37 | 40 | ■ | 37 |
A. | 35,2 | B. | 36,4 | C. | 35,3 | D. | 36,3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com