【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點M是上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當(dāng)∠AOM=60°時,求DM的長;
②當(dāng)AM=12時,求DM的長.
(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.
【答案】(1)①DM= 10;②MD=;(2)∠CMD=45°.
【解析】
(1)①當(dāng)時,所以△AMO是等邊三角形,從而可知∠MOD=30°,∠D=30°,所以DM=OM=10;
②過點M作MF⊥OA于點F,設(shè)AF=x, 利用勾股定理即可求出x的值.易證明△AMF∽△ADO,從而可知AD的長度,進(jìn)而可求出MD的長度.
(2)根據(jù)點M的位置分類討論,然后利用圓周角定理以及圓內(nèi)接四邊形的性質(zhì)即可求出答案.
(1)①當(dāng)∠AOM=60°時,
∵
∴△AMO是等邊三角形,
∴∠A=∠MOA=60°,
∴∠MOD=30°,∠D=30°,
∴DM=OM=10
②過點M作MF⊥OA于點F,
設(shè)
∴
∵
由勾股定理可知:
∴
∴
∵MF∥OD,
∴△AMF∽△ADO,
∴
∴
∴
(2)當(dāng)點M位于之間時,
連接BC,
∵C是的中點,
∴∠B=45°,
∵四邊形AMCB是圓內(nèi)接四邊形,
此時∠CMD=∠B=45°,
當(dāng)點M位于之間時,
連接BC,
由圓周角定理可知:∠CMD=∠B=45°
綜上所述,∠CMD=45°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,已知△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側(cè)),BC=2,AB=2,△ADC與△ABC關(guān)于AC所在的直線對稱.
(1)當(dāng)OB=2時,求點D的坐標(biāo);
(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;
(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅星中學(xué)九年級(1)班三位教師決定帶領(lǐng)本班名學(xué)生利用假期去某地旅游,楓江旅行社的收費標(biāo)準(zhǔn)為:教師全價,學(xué)生半價;而東方旅行社不管教師還是學(xué)生一律八折優(yōu)惠,這兩家旅行社的全價都是500元。
(1)用含的式子表示三位教師和位學(xué)生參加這兩家旅行社所需的費用各是多少元;
(2)如果=50時,請你計算選擇哪一家旅行社較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學(xué)生選擇,每門課程被選到的機會均等.
(1)學(xué)生小紅計劃選修兩門課程,請寫出所有可能的選法;
(2)若學(xué)生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鈍角三角形ABC中,∠BAC>90°,AB=AC,∠ACB=α,過點A的直線l交BC邊于點D.點E在直線l上,且BC=BE.,點E在AD延長線上.
①當(dāng)α=30°,點D恰好為BC中點時,補全圖1直接寫出∠BAE= °,
∠BEA= °;
②如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店5月份購進(jìn)甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.6月份,這兩種水果的進(jìn)價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店6月份購進(jìn)這兩種水果的數(shù)量與5月份都相同,將多支付貨款300元,求該店5月份購進(jìn)甲、乙兩種水果分別是多少千克?
(2)若6月份將這兩種水果進(jìn)貨總量減少到120千克,且甲種水果不超過乙種水果的3倍,則6月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,則要投入_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做了一個數(shù)學(xué)實驗:將一個圓柱形的空玻璃杯放入形狀相同的無水魚缸內(nèi),然后,小明對準(zhǔn)玻璃杯口勻速注水,如圖所示,在注水過程中,杯底始終緊貼魚缸底部,則下面可以近似地刻畫出無魚水缸內(nèi)最高水位與注水時間之間的變化情況的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等角轉(zhuǎn)化;如圖1,已知點A是BC外一點,連結(jié)AB、AC,求∠BAC+∠B+∠C的度數(shù).
(1)閱讀并補充下面的推理過程
解:過點A作ED∥BC,
∴∠B=∠EAB,∠C= ( )
又∵∠EAB+∠BAC+∠DAC=180°
∴∠B+∠BAC+∠C=180°
從上面的推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC、∠B、∠C“湊”在一起,得出角之間的關(guān)系,使問題得以解決.
(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù)(提示:過點C作CF∥AB);
(3)如圖3,已知AB∥CD,點C在點D的右側(cè),∠ADC=80°,點B在點A的左側(cè),∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直線交于點E,點E在兩條平行線AB與CD之間,求∠BED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com