【題目】如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且BC是⊙O的切線.
(1)求證:CE=CB;
(2)連接AF,BF,求∠ABF的正弦值;
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
【答案】(1)詳見解析;(2)∠ABF的正弦值是;(3)⊙O的半徑是.
【解析】
(1)連接OB,由圓的半徑相等和切線的性質可得∠AED=∠CBE,即可證明CE=CB;
(2)連接OF,AF,BF,可證△OAF是等邊三角形,再利用圓周角定理可得∠ABF=30°,即可得出結論;
(3)過點C作CG⊥BE于點G,由CE=CB,可得EG=BE=5,再由Rt△ADE∽Rt△CGE和勾股定理即可得出結論.
(1)證明:連接OB,如圖,
∵OA=OB,
∴∠DAE=∠OBA,
∵BC切⊙O于B,
∴∠OBC=90°,
∴∠OBA+∠CBE=90°,
∵DC⊥OA,
∴∠ADE=90°,
∴∠DAE+∠AED=90°,
∴∠AED=∠CBE=∠CEB,
∴CE=CB;
(2)解:連接OF,AF,BF,如圖,
∵DA=DO,CD⊥OA,
∴AF=OF,
∵OA=OF,
∴△OAF是等邊三角形,
∴∠AOF=60°,
∴∠ABF=∠AOF=30°,
即∠ABF的正弦值是;
(3)過點C作CG⊥BE于點G,由CE=CB,如圖
∴EG=BE=5,
又∵Rt△ADE∽Rt△CGE,
∴sin∠ECG=sin∠A=,
∴,
∴,
又∵CD=15,CE=13,
∴DE=2,
∵Rt△ADE∽Rt△CGE,
∴,
∴,∴⊙O的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是y軸、x軸上兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E;
(1)如圖(1),已知C點的橫坐標為-1,直接寫出點A的坐標;
(2)如圖(2), 當?shù)妊?/span>Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點A在x軸上,且A(-4,0),點B在y軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結CD交y軸于點P,問當點B在y軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖中實線所示,函數(shù)y=|a(x﹣1)2﹣1|的圖象經過原點,小明同學研究得出下面結論:
①a=1;②若函數(shù)y隨x的增大而減小,則x的取值范圍一定是x<0;
③若方程|a(x﹣1)2﹣1|=k有兩個實數(shù)解,則k的取值范圍是k>1;
④若M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數(shù)圖象的四個不同點,且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE∥OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2﹣12n+36+|n﹣2m|=0.
(1)求A、B兩點的坐標;
(2)若點D為AB中點,延長DE交x軸于點F,在ED的延長線上取點G,使DG=DF,連接BG.
①BG與y軸的位置關系怎樣?說明理由; ②求OF的長;
(3)如圖2,若點F的坐標為(10,10),E是y軸的正半軸上一動點,P是直線AB上一點,且P的橫坐標為6,是否存在點E使△EFP為等腰直角三角形?若存在,求出點E的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結論正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面內,若點P與△ABC三個頂點中的任意兩個頂點連接形成的三角形都是等腰三角形,則稱點P是△ABC的巧妙點.
(1)如圖1,求作△ABC的巧妙點P(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點P (尺規(guī)作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數(shù)是 .
(3)等邊三角形的巧妙點的個數(shù)有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在軸上,,,,將繞點按順時針方向旋轉得到,則點的坐標是( )
A. (2,-2) B. (2,-2) C. (2,2) D. (2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△在平面直角坐標系中的位置如圖所示.
(1)作出△關于軸對稱的△,并寫出△各頂點的坐標;
(2)將△向右平移6個單位,作出平移后的△,并寫出△各頂點的坐標;
(3)觀察△和△,它們是否關于某直線對稱?若是,請用粗線條畫出對稱軸.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com