【題目】如圖,點C是半圓O上的一點,AB是⊙O的直徑,D是的中點,作DE⊥AB于點E,連接AC交DE于點F,求證:AF=DF.
下面是小明的做法,請幫他補充完整(包括補全圖形)
解:補全半圓O為完整的⊙O,連接AD,延長DE交⊙O于點H(補全圖形)
∵D是的中點,
∴.
∵DE⊥AB,AB是⊙O的直徑,
∴( )(填推理依據(jù))
∴
∴∠ADF=∠FAD( )(填推理依據(jù))
∴AF=DF( )(填推理依據(jù))
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O經(jīng)過四邊形ABCD的B、D兩點,并與四條邊分別交于點E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請直接寫出θ、α和β之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.
(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數(shù)量關系;
(2)若將△OCD繞O旋轉到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關系,并證明你的結論;
(3)若將△OCD由圖(1)的位置繞O順時針旋轉角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD交于點O,若增加一個條件,使ABCD成為菱形,下列給出的條件不正確的是( )
A.AB=ADB.AC⊥BDC.AC=BDD.AD=CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線的對稱軸與x軸交于點A.
(1)A的坐標為 (用含a的代數(shù)式表示);
(2)若拋物線與x軸交于P,Q兩點,且PQ=2,求拋物線的解析式.
(3)點B的坐標為,若該拋物線與線段AB恰有一個公共點,結合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.
原題:如圖①,點分別在正方形的邊上,,連接,則,試說明理由.
(1)思路梳理
因為,所以把繞點逆時針旋轉90°至,可使與 重合.因為,所以,點共線.
根據(jù) ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中,,,點分別在邊上,.若都不是直角,則當
(3)聯(lián)想拓展
如圖③,在中,,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點達到終點后,另外一點也隨之停止運動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉角之后,所得射線與直線AD交于F點.試探究線段EB與EF的數(shù)量關系.
小宇發(fā)現(xiàn)點E的位置,和的大小都不確定,于是他從特殊情況開始進行探究.
(1)如圖1,當==90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進而可得,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關系為 .
(2)如圖2,當=60°,=120°時,
①依題意補全圖形;
②請幫小宇繼續(xù)探究(1)的結論是否成立.若成立,請給出證明;若不成立,請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結論之后,在此基礎上對一般的圖形進行了探究,設∠ABE=,若旋轉后所得的線段EF與EB的數(shù)量關系滿足(1)中的結論,請直接寫出角,,滿足的關系: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com