【題目】如圖,AB為半圓O的直徑,點(diǎn)C為半圓上任一點(diǎn).

(1)若∠BAC=30°,過(guò)點(diǎn)C作半圓O的切線交直線AB于點(diǎn)P.求證:PBC≌△AOC;

(2)若AB=6,過(guò)點(diǎn)CAB的平行線交半圓O于點(diǎn)D.當(dāng)以點(diǎn)A,OC,D為頂點(diǎn)的四邊形為菱形時(shí),求的長(zhǎng).

【答案】()證明見(jiàn)解析;(2)π2π.

【解析】

(1)根據(jù)圓周角定理得到∠ACB=90°,推出△OBC是等邊三角形,根據(jù)等邊三角形和外角的性質(zhì)得到∠AOC=∠PBC=120°,根據(jù)切線的性質(zhì)得到∠OCP=90°,根據(jù)全等三角形的判定即可得到結(jié)論;(2)根據(jù)菱形的性質(zhì)得到OA=AD=CD=OC,連接OD,得到△AOD與△COD是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到∠AOD=∠COD=60°,求得∠BOC=60°,根據(jù)弧長(zhǎng)公式即可得到結(jié)論.

1)AB為半圓O的直徑,

∴∠ACB=90°,

∵∠BAC=30°,

∴∠ABC=60°,

OBOC,

∴△OBC是等邊三角形,

OCBC,OBCBOC=60°,

∴∠AOCPBC=120°,

CP是⊙O的切線,

OCPC

∴∠OCP=90°,

∴∠ACOPCB

PBCAOC中,,

∴△PBC≌△AOCASA;

(2)如圖1,連接ODBD,CD,

∵四邊形AOCD是菱形,

OAADCDOC,

則,OAODOC,

∴△AODCOD是等邊三角形,

∴∠AODCOD=60°,

∴∠BOC=60°,

的長(zhǎng)==π;

如圖2,同理∠BOC=120°,

的長(zhǎng)==2π,

綜上所述,的長(zhǎng)為π2π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是⊙O外一點(diǎn),過(guò)點(diǎn)P作⊙O的切線,切點(diǎn)為A,連接PO并延長(zhǎng),交⊙O于B、C兩點(diǎn).

(1)求證:△PBA∽△PAC;

(2)若∠BAP=30°,PB=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABDCBFCE,需要補(bǔ)充一個(gè)條件,就能使△ABE≌△DCF,下面幾個(gè)答案:AEDF,AEDF;ABDCA=∠D.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班同學(xué)上學(xué)期全部參加了捐款活動(dòng),捐款情況如下統(tǒng)計(jì)表:

金額(元)

5

10

15

20

25

30

人數(shù)(人)

8

12

10

6

2

2

(1)求該班學(xué)生捐款額的平均數(shù)和中位數(shù);

(2)試問(wèn)捐款額多于15元的學(xué)生數(shù)是全班人數(shù)的百分之幾?

(3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學(xué)生、孤老病者三種被資助的對(duì)象,問(wèn)該班捐給重病學(xué)生是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以ABC的邊AB為直徑畫(huà)⊙O,交AC于點(diǎn)D,半徑OEBD,連接BEDE,BD,設(shè)BEAC于點(diǎn)F,若∠DEBDBC

(1)求證:BC是⊙O的切線;

(2)若BFBC=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑為ABD是半圓上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接BD并延長(zhǎng)至點(diǎn)C,使CDBD,連接AC,過(guò)點(diǎn)DDEAC于點(diǎn)E

(1)請(qǐng)猜想DE與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)當(dāng)AB=4,BAC=45°時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,的半徑長(zhǎng)是,當(dāng)時(shí),與直線的位置關(guān)系是________;當(dāng)時(shí),與直線的位置關(guān)系是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OA,OB是⊙O的半徑,且OAOB,垂足為O,P是射線OA上的一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過(guò)Q作⊙O的切線交射線OA于點(diǎn)E.

(1)如圖①,點(diǎn)P在線段OA上,若∠OBQ=15°,求∠AQE的大小;

(2)如圖②,點(diǎn)POA的延長(zhǎng)線上,若∠OBQ=65°,求∠AQE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,點(diǎn)P在線段AB上以3 cm/s的速度,由AB運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段BD上由BD運(yùn)動(dòng).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)運(yùn)動(dòng)時(shí)間t=1(s),△ACP與△BPQ是否全等?說(shuō)明理由,并直接判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

(2)將 “AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA”,其他條件不變.若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能使△ACP與△BPQ全等.

(3)在圖2的基礎(chǔ)上延長(zhǎng)AC,BD交于點(diǎn)E,使C,D分別是AE,BD中點(diǎn),若點(diǎn)Q以(2)中的運(yùn)動(dòng)速度從點(diǎn)B出發(fā),點(diǎn)P以原來(lái)速度從點(diǎn)A同時(shí)出發(fā),都逆時(shí)針沿△ABE三邊運(yùn)動(dòng),求出經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次相遇.

查看答案和解析>>

同步練習(xí)冊(cè)答案