精英家教網 > 初中數學 > 題目詳情
(2007•廈門)已知:如圖,AB是⊙O的弦,點C在上.
(1)若∠OAB=35°,求∠AOB的度數;
(2)過點C作CD∥AB,若CD是⊙O的切線,求證:點C是的中點.

【答案】分析:(1)根據等邊對等角和三角形的內角和定理進行計算;
(2)連接OC,根據切線的性質、平行線的性質和垂徑定理進行證明.
解答:(1)解:∵OA=OB,∠OAB=35°,
∴∠OBA=∠OAB=35°.
∴∠AOB=110°.

(2)證明:連接OC,
∵CD為⊙O的切線,
∴OC⊥CD又AB∥CD,
∴OC⊥AB.

即C是的中點.
點評:此題綜合運用了切線的性質、平行線的性質和垂徑定理進行證明.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•廈門)已知拋物線的函數關系式:y=x2+2(a-1)x+a2-2a(其中x是自變量),
(1)若點P(2,3)在此拋物線上,
①求a的值;
②若a>0,且一次函數y=kx+b的圖象與此拋物線沒有交點,請你寫出一個符合條件的一次函數關系式(只需寫一個,不要寫過程);
(2)設此拋物線與軸交于點A(x1,0)、B(x2,0).若x1<x2,且拋物線的頂點在直線x=的右側,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2007年福建省廈門市中考數學試卷(解析版) 題型:解答題

(2007•廈門)已知拋物線的函數關系式:y=x2+2(a-1)x+a2-2a(其中x是自變量),
(1)若點P(2,3)在此拋物線上,
①求a的值;
②若a>0,且一次函數y=kx+b的圖象與此拋物線沒有交點,請你寫出一個符合條件的一次函數關系式(只需寫一個,不要寫過程);
(2)設此拋物線與軸交于點A(x1,0)、B(x2,0).若x1<x2,且拋物線的頂點在直線x=的右側,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2007•廈門)已知:如圖,在△ABC中,D是AB邊上的一點,BD>AD,∠A=∠ACD,
(1)若∠A=∠B=30°,BD=,求CB的長;
(2)過D作∠CDB的平分線DF交CB于F,若線段AC沿著AB方向平移,當點A移到點D時,判斷線段AC的中點E能否移到DF上,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《圓》(11)(解析版) 題型:解答題

(2007•廈門)已知:如圖,AB是⊙O的弦,點C在上.
(1)若∠OAB=35°,求∠AOB的度數;
(2)過點C作CD∥AB,若CD是⊙O的切線,求證:點C是的中點.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《四邊形》(11)(解析版) 題型:解答題

(2007•廈門)已知:如圖,在△ABC中,D是AB邊上的一點,BD>AD,∠A=∠ACD,
(1)若∠A=∠B=30°,BD=,求CB的長;
(2)過D作∠CDB的平分線DF交CB于F,若線段AC沿著AB方向平移,當點A移到點D時,判斷線段AC的中點E能否移到DF上,并說明理由.

查看答案和解析>>

同步練習冊答案