【題目】根據(jù)要求回答問題:
(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題
如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.

【答案】
(1)AD=BE,AD⊥BE
(2)解:結(jié)論:AD=BE,AD⊥BE.

理由:如圖2中,設(shè)AD交BE于H,AD交BC于O.

∵△ACB與△DCE均為等腰直角三角形,

∴AC=BC,CE=CD,∠ACB=∠ECD=90°,

∴ACD=∠BCE,

在Rt△ACD和Rt△BCE中

,

∴△ACD≌△BCE(SAS),

∴AD=BE,∠CAD=∠CBE,

∵∠CAO+∠AOC=90°,∠AOC=∠BOH,

∴∠BOH+∠OBH=90°,

∴∠OHB=90°,

∴AD⊥BE,

∴AD=BE,AD⊥BE.


(3)解:如圖3中,作AE⊥AP,使得AE=PA,則易證△APE≌△ACP,

∴PC=BE,

圖3﹣1中,當(dāng)P、E、B共線時(shí),BE最小,最小值=PB﹣PE=5﹣3 ,

圖3﹣2中,當(dāng)P、E、B共線時(shí),BE最大,最大值=PB+PE=5+3 ,

∴5﹣3 ≤BE≤5+3 ,

即5﹣3 ≤PC≤5+3


【解析】解:(1)結(jié)論:AD=BE,AD⊥BE.

理由:如圖1中,

∵△ACB與△DCE均為等腰直角三角形,

∴AC=BC,CE=CD,

∠ACB=∠ACD=90°,

在Rt△ACD和Rt△BCE中

,

∴△ACD≌△BCE(SAS),

∴AD=BE,∠EBC=∠CAD

延長BE交AD于點(diǎn)F,

∵BC⊥AD,

∴∠EBC+∠CEB=90°,∵∠CEB=AEF,

∴∠EAD+∠AEF=90°,

∴∠AFE=90°,即AD⊥BE.

∴AD=BE,AD⊥BE.

所以答案是AD=BE,AD⊥BE.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用全等三角形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明乘坐家門口的公共汽車前往西安北站去乘高鐵,在行駛了三分之一路程時(shí),小明估計(jì)繼續(xù)乘公共汽車到北站時(shí)高鐵將正好開出,于是小明下車改乘出租車,車速提高了一倍,結(jié)果趕在高鐵開車前半小時(shí)到達(dá)西安北站.已知公共汽車的平均速度是20千米/小時(shí)(假設(shè)公共汽車及出租車保持勻速行使,途中換乘、紅綠燈等待等情況忽略不計(jì)),請回答以下兩個(gè)問題:

1)出租車的速度為_____千米/小時(shí);

2)小明家到西安北站有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為更好地開展“傳統(tǒng)文化進(jìn)校園”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布條形圖.
最喜愛的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表

項(xiàng)目類型

頻數(shù)

頻率

書法類

18

a

圍棋類

14

0.28

喜劇類

8

0.16

國畫類

b

0.20

根據(jù)以上信息完成下列問題:

(1)直接寫出頻數(shù)分布表中a的值;
(2)補(bǔ)全頻數(shù)分布條形圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛圍棋的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店去年38月銷售吐魯番葡萄、哈密瓜的情況如下表:

3

4

5

6

7

8

吐魯番葡萄(單位:百公斤)

4

8

5

8

10

13

哈密瓜(單位:百公斤)

8

7

9

7

10

7

(1)請你根據(jù)以上數(shù)據(jù)填寫下表:

平均數(shù)/百公斤

方差

吐魯番葡萄

8

9

哈密瓜

(2)請你根據(jù)上述信息,對這兩種水果在去年3月份至8月份的銷售情況進(jìn)行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)AB,C的距離分別為3,4,5,則ABC的面積為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方體敞口玻璃罐,長、寬、高分別為16 cm6 cm6 cm,在罐內(nèi)點(diǎn)E處有一小塊餅干碎末,此時(shí)一只螞蟻正好在罐外壁,在長方形ABCD中心的正上方2 cm處,則螞蟻到達(dá)餅干的最短距離是多少cm.(  )

A. 7B.

C. 24D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,求EE′的長?并求出∠BE′C的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一組數(shù)據(jù)x1x2,…,xn的平均數(shù)為a,數(shù)據(jù)y1,y2,…,yn的平均數(shù)為b,則數(shù)據(jù)4x1+y1,4x2+y2,…,4xn+yn的平均數(shù)為__________.

查看答案和解析>>

同步練習(xí)冊答案