【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過(guò)點(diǎn)C,M為EF的中點(diǎn),則下列結(jié)論正確的是( )
A.當(dāng)x=3時(shí),EC<EM
B.當(dāng)y=9時(shí),EC>EM
C.當(dāng)x增大時(shí),BEDF的值增大
D.當(dāng)x變化時(shí),四邊形BCDA的面積不變
【答案】D
【解析】
根據(jù)題意并結(jié)合圖象可得△BEC和△CDF均為等腰直角三角形以及x、y滿足的函數(shù)關(guān)系式.
代入x=3可求出y,EC,EF的長(zhǎng),再結(jié)合M為EF的中點(diǎn)可得出EM的長(zhǎng),即可對(duì)選項(xiàng)A進(jìn)行判斷;
代入y=9可求出x,EC,EM的長(zhǎng),即可對(duì)選項(xiàng)B進(jìn)行判斷;
由EC=x,CF=y可得出ECCF的值,即可對(duì)選項(xiàng)C進(jìn)行判斷;
利用反比例函數(shù)的系數(shù)k的幾何意義可得S矩形BCDA的值,進(jìn)而可對(duì)選項(xiàng)D進(jìn)行判斷.
解:∵四邊形ABCD為矩形,∴AB=CD.
∵△AEF為等腰直角三角形,∴∠E=∠F=45°,
∴△BEC和△CDF均為等腰直角三角形.
∵BC=x,CD=y,∴AE=x+y,
∴EC=x,CF=y,EF=(x+y).
∵y與x滿足反比例函數(shù)關(guān)系,且點(diǎn)(3,3)在該函數(shù)圖象上,
∴xy=9.
A、當(dāng)x=3時(shí),y==3,EC=3,EF=6.
又∵M為EF的中點(diǎn),∴EM=3=EC,所以本選項(xiàng)不符合題意;
B、當(dāng)y=9時(shí),x=1,∴EC=,CF=,EM=EF=5,
∴EC<EM,所以本選項(xiàng)不符合題意;
C、∵EC=x,CF=y,∴ECCF=2xy=2×9=18,所以本選項(xiàng)不符合題意;
D、∵S矩形BCDA=xy=9,∴當(dāng)x變化時(shí),四邊形BCDA的面積不變,所以本選項(xiàng)符合題意.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB⊥BC,點(diǎn)P是邊AD上一動(dòng)點(diǎn),將△ABP沿BP折疊得到△BEP,連接DE,CE,已知AB=4,AD=3,BC=6,則△CDE面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片中,對(duì)角線,點(diǎn)分別是和的中點(diǎn),現(xiàn)將這張紙片折疊,使點(diǎn)落在上的點(diǎn)處,折痕為,若的延長(zhǎng)線恰好經(jīng)過(guò)點(diǎn),則點(diǎn)到對(duì)角線的距離為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)參加“創(chuàng)文明城市”書畫比賽時(shí),老師從全校個(gè)班中隨機(jī)抽取了個(gè)班(用表示),對(duì)抽取的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.回答下列問(wèn)題:
(1)老師采用的調(diào)查方式是 .(填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù) 度.
(3)請(qǐng)估計(jì)全校共征集作品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一蓄水池每小時(shí)的排水量V(m3/h)與排完水池中的水所用的時(shí)間t(h)之間成反比例函數(shù)關(guān)系,其圖象如圖所示.
(1)求V與t之間的函數(shù)表達(dá)式;
(2)若要2h排完水池中的水,那么每小時(shí)的排水量應(yīng)該是多少?
(3)如果每小時(shí)排水量不超過(guò)4000m3,那么水池中的水至少要多少小時(shí)才能排完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:矩形中,,,點(diǎn),分別在邊,上,直線交矩形對(duì)角線于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且點(diǎn)在射線上.
(1)如圖1所示,當(dāng)時(shí),求的長(zhǎng);
(2)如圖2所示,當(dāng)時(shí),求的長(zhǎng);
(3)請(qǐng)寫出線段的長(zhǎng)的取值范圍,及當(dāng)的長(zhǎng)最大時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過(guò)點(diǎn)A作AC⊥OY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)P是△ABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過(guò)點(diǎn)P作PD∥OY交OX于點(diǎn)D,作PE∥OX交OY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com