【題目】
(1)如圖1,△ABC為等邊三角形,現(xiàn)將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數(shù);
②DE與EF相等嗎?請說明理由;
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF,請直接寫出探究結(jié)果:
①求∠EAF的度數(shù);
②線段AE,ED,DB之間的數(shù)量關(guān)系.
【答案】
(1)
解:①∵△ABC是等邊三角形,
∴AC=BC,∠BAC=∠B=60°,
∵∠DCF=60°,
∴∠ACF=∠BCD,
在△ACF和△BCD中, ,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF;理由如下:
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=60°﹣30°=30°,
∴∠DCE=∠FCE,
在△DCE和△FCE中, ,
∴△DCE≌△FCE(SAS),
∴DE=EF;
(2)
解:①∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,∠BAC=∠B=45°,
∵∠DCF=90°,
∴∠ACF=∠BCD,
在△ACF和△BCD中, ,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=45°,AF=DB,
∴∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,
∴∠FCE=90°﹣45°=45°,
∴∠DCE=∠FCE,
在△DCE和△FCE中, ,
∴△DCE≌△FCE(SAS),
∴DE=EF,
在Rt△AEF中,AE2+AF2=EF2,
又∵AF=DB,
∴AE2+DB2=DE2.
【解析】(1)①由等邊三角形的性質(zhì)得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,證明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性質(zhì)得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2 , 即可得出結(jié)論.
【考點精析】認(rèn)真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°),還要掌握等邊三角形的性質(zhì)(等邊三角形的三個角都相等并且每個角都是60°)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平行四邊形ABCD中,AE⊥BC交于點E,以點B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時針旋轉(zhuǎn),得到△BA′E′,連接DA′,若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )
A.130°
B.150°
C.160°
D.170°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中做出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點的坐標(biāo);
(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2 , 并標(biāo)出B2、C2兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一圓形紙片向右、向上兩次對折后得到如圖2所示的扇形AOB.已知OA=6,取OA的中點C,過點C作CD⊥OA交 于點D,點F是 上一點.若將扇形BOD沿OD翻折,點B恰好與點F重合,用剪刀沿著線段BD,DF,F(xiàn)A依次剪下,則剪下的紙片(形狀同陰影圖形)面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y= (x>0)的圖象經(jīng)過AO的中點C,且與AB相交于 點D,OB=4,AD=3
(1)求反比例函數(shù)y= 的解析式;
(2)若直線y=﹣x+m與反比例函數(shù)y= (x>0)的圖象相交于兩個不同點E、F(點E在點F的左邊),與y軸相交于點M ①則m的取值范圍為(請直接寫出結(jié)果)
②求MEMF的值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當(dāng)A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中的△BCE繞點B旋轉(zhuǎn),當(dāng)A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3位置,此時A,B,M三點在同一直線上.(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com