【題目】如圖,已知在平行四邊形ABCD中,AE⊥BC交于點E,以點B為中心,取旋轉角等于∠ABC,把△BAE順時針旋轉,得到△BA′E′,連接DA′,若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )
A.130°
B.150°
C.160°
D.170°
【答案】C
【解析】解:在ABCD中, ∵AD∥BC,
∴∠BA′D=180°﹣∠ADA′=180°﹣50°=130°,
∵∠ADC=60°,
∴∠ABC=∠ADC=60°,
在Rt△AEB中,∠BAE=90°﹣60°=30°,
由旋轉得:∠BA′E′=∠BAE=30°,
∴∠DA′E′=130°+30°=160°;
故選C.
【考點精析】利用平行四邊形的性質和旋轉的性質對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.
科目:初中數學 來源: 題型:
【題目】如圖,D為△ABC內一點,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,則BD的長為( 。
A. 1 B. C. D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A,B兩點(點B在點A的右側),與y軸的正半軸交于點C,頂點為D.若以BD為直徑的⊙M經過點C.
(1)請直接寫出C,D的坐標(用含a的代數式表示);
(2)求拋物線的函數表達式;
(3)⊙M上是否存在點E,使得∠EDB=∠CBD?若存在,請求出所滿足的條件的E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點B按順時針方向旋轉得到△DCB,使得點D落在x軸的正半軸上,連接OC、AD.
(1)求證:OC=AD;
(2)求OC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個交點分別是A、B(點A在點B的左側).
(1)求A、B的坐標;
(2)利用函數圖象,寫出y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣2x2+bx+c的圖象經過點A(0,4)和B(1,﹣2).
(1)求此拋物線的解析式;
(2)求此拋物線的對稱軸和頂點坐標;
(3)設拋物線的頂點為C,試求△CAO的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“低碳環(huán)保,綠色出行”的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y(米)與時間x(分鐘)的關系如圖.請結合圖象,解答下列問題:
(1)填空:a=________;b=________;m=________.
(2)若小軍的速度是 120 米/分,求小軍第二次與爸爸相遇時距圖書館的距離.
(3)在(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時間后與小軍相距100 米,此時 小軍騎行的時間為________分鐘.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
(1)如圖1,△ABC為等邊三角形,現(xiàn)將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.
①求∠EAF的度數;
②DE與EF相等嗎?請說明理由;
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF,請直接寫出探究結果:
①求∠EAF的度數;
②線段AE,ED,DB之間的數量關系.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com