【題目】已知實(shí)數(shù)a,b滿足ab=3,a﹣b=2,則a2b﹣ab2的值是

【答案】6
【解析】解:a2b﹣ab2=ab(a﹣b),
將ab=3,a﹣b=2,代入得出:
原式=ab(a﹣b)=3×2=6.
所以答案是:6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知半圓O,AB為直徑,P為射線AB上一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為C點(diǎn),D為弧AC上一點(diǎn),

連接BD、BC.

(1)求證:∠D=∠PCB;

(2)若四邊形CDBP為平行四邊形,求∠BPC度數(shù);

(3)若AB=8,PB=2,求PC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,不能判斷四邊形ABCD是平行四邊形的是(

A.AB∥DC,AD=BC
B.AB∥DC,AD∥BC
C.AB=DC,AD=BC
D.OA=OC,OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將拋物線y=x2向右平移2個(gè)單位,再向上平移3個(gè)單位,則所得拋物線的表達(dá)式為(
A.y=(x+2)2+3
B.y=(x﹣2)2+3
C.y=(x+2)2﹣3
D.y=(x﹣2)2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組數(shù)是三角形的三邊,能組成直角三角形的一組數(shù)是( )
A. , ,
B.2,3,4
C.3,4,5
D.6,8,12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.有兩條邊和一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形全等

B.矩形的對(duì)角線互相垂直平分

C.正方形既是軸對(duì)稱圖形又是中心對(duì)稱圖形

D.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(-4a)2·a-a3=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△EDC,此時(shí)點(diǎn)D在AB邊上,斜邊DE交AC于點(diǎn)F,則n=_______; 圖中陰影部分的面積為____

查看答案和解析>>

同步練習(xí)冊(cè)答案