【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH.
(1)求證:△AEH∽△ABC;
(2)求矩形EFGH的面積.
【答案】(1)見解析;(2)矩形EFGH的面積為.
【解析】
(1)由EH∥FG可得∠AEH=∠ABC,∠AHE=∠ACB,根據(jù)兩角對應(yīng)相等的兩個三角形相似即可判定△AEH∽△ABC;(2)根據(jù)相似三角形的性質(zhì)求得EH的長,再求得EF的長,利用矩形的面積公式即可求得矩形EFGH的面積.
(1)證明:∵四邊形EFGH是矩形
∴EH∥FG,EF⊥FG
∵EH∥FG
∴∠AEH=∠ABC,∠AHE=∠ACB
∴△AEH∽△ABC
(2)∵EF⊥FG,AD⊥BC
∴AD∥EF
∴
∵EH∥BC
∴
∴,且BC=3,AD=2,EF=EH.
∴
∴EH=
即EF=1
∴矩形EFGH的面積=EF×EH=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個圓形噴水池,在水池中央垂直于地面安裝一個柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是y=﹣x2+2x+,則下列結(jié)論:
(1)柱子OA的高度為m;
(2)噴出的水流距柱子1m處達到最大高度;
(3)噴出的水流距水平面的最大高度是2.5m;
(4)水池的半徑至少要2.5m才能使噴出的水流不至于落在池外.
其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a>0).
(1)當a=1時,求拋物線與x軸的交點坐標及對稱軸;
(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標;
②將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達式;
(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,E為AD的中點,EF⊥EC交AB于F(AB>AE).問:△AEF與△EFC是否相似?若相似,證明你的結(jié)論;若不相似,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,反比例函數(shù)y=﹣(x<0)的圖象過點A,則△BEC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某實踐小組去公園測量人工湖AD的長度.小明進行如下測量:點D在點A的正北方向,點B在點A的北偏東50°方向,AB=40米.點E在點B的正北方向,點C在點B的北偏東30°方向,CE=30米.點C和點E都在點D的正東方向,求AD的長(結(jié)果精確到1米).(參考數(shù)據(jù):≈1.732,sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c 與 x 軸的一個交點為(m,0).
(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對稱軸;
(2)若 m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com