【題目】如圖,,,點在邊上(與、不重合),四邊形為正方形,過點作,交的延長線于點,連接,交于點,對于下列結(jié)論:①;②四邊形是矩形;③.其中正確的是( )
A.①②③B.①②C.①③D.②③
【答案】A
【解析】
由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
由△AFG≌△DAC,推出四邊形BCGF是矩形,②正確;
由矩形的性質(zhì)和相似三角形的判定定理證出△ACD∽△FEQ,③正確.
解:①∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG.
故正確;
②∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形.
故正確;
③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ.
故正確.
綜上所述,正確的結(jié)論是①②③.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家水果店以每千克2元的價格購進某種水果若干千克,然后以每千克4元的價格出售,每天可售出100千克,通過調(diào)查發(fā)現(xiàn),這種水果每千克的售價每降低1元,每天可多售出200千克.
(1)若將這種水果每千克的售價降低元,則每天銷售量是多少千克?(結(jié)果用含的代數(shù)式表示)
(2)若想每天盈利300元,且保證每天至少售出260千克,那么水果店需將每千克的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1);
(2)(-2a3)23a3+6a12÷(-2a3);
(3)(x+1)(x-2)-(x-2)2;
(4)(a+2b+3)(a+2b-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關(guān)于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(背景知識)數(shù)軸上A、B兩點在數(shù)軸上對應的數(shù)為a、b,則A、B兩點之間的距離定義為:AB=|b-a|.
(問題情境)已知點A、B、O在數(shù)軸上表示的數(shù)分別為-6、10和0,點M、N分別從O、B出發(fā),同時向左勻速運動,點M的速度是每秒1個單位長度,點N的速度是每秒3個單位長度,設運動的時間為t秒(t>0),
(1)填空:①OA= .OB= ;
②用含t的式子表示:AM= ;AN= ;
(2)當t為何值時,恰好有AN=2AM;
(3)求|t-6|+|t+10|的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“囧”(jiong)是近時期網(wǎng)絡流行語,像一個人臉郁悶的神情.如圖所示,一張邊長為20的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分).設剪去的小長方形長和寬分別為、,剪去的兩個小直角三角形的兩直角邊長也分別為、.
(1)用含有、的代數(shù)式表示上圖中“囧”的面積;
(2)當,時,求此時“囧”的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+m與y=nx+4n(n≠0)的交點的橫坐標為-2.則下列結(jié)論:①m<0,n>0;②直線y=nx+4n一定經(jīng)過點(-4,0);③m與n滿足m=2n-2;④當x>-2時,nx+4n>-x+m,其中正確結(jié)論的個數(shù)是( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com