【題目】如圖所示,在⊙O中, = ,弦AB與弦AC交于點A,弦CD與AB交于點F,連接BC.
(1)求證:AC2=ABAF;
(2)若⊙O的半徑長為2cm,∠B=60°,求圖中陰影部分面積.

【答案】
(1)證明:∵ =

∴∠ACD=∠ABC,又∠BAC=∠CAF,

∴△ACF∽△ABC,

= ,即AC2=ABAF;


(2)解:解:連接OA,OC,過O作OE⊥AC,垂足為點E,

如圖所示:

∵∠ABC=60°,∴∠AOC=120°,

又∵OA=OC,∴∠AOE=∠COE= ×120°=60°,

在Rt△AOE中,OA=2cm,

∴OE=OAcos60°=1cm,

∴AE= = cm,

∴AC=2AE=2 cm,

則S陰影=S扇形OAC﹣SAOC= ×2 ×1=( )cm2


【解析】(1)由 = ,利用等弧所對的圓周角相等得到一對角相等,再由一對公共角相等,利用兩對對應角相等的兩三角形相似可得出△ACF與△ABC相似,根據(jù)相似得比例可得證;(2)連接OA,OC,利用同弧所對的圓心角等于圓周角的2倍,由∠B為60°,求出∠AOC為120°,過O作OE垂直于AC,垂足為點E,由OA=OC,利用三線合一得到OE為角平分線,可得出∠AOE為60°,在Rt△AOE中,由OA及cos60°的值,利用銳角三角函數(shù)定義求出OE的長,在Rt△AOE中,利用勾股定理求出AE的長,進而求出AC的長,由扇形AOC的面積﹣△AOC的面積表示出陰影部分的面積,利用扇形的面積公式及三角形的面積公式即可求出陰影部分的面積.
【考點精析】掌握圓心角、弧、弦的關系和圓周角定理是解答本題的根本,需要知道在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BCAB//CD.請完成下面的推理過程,填寫理由或數(shù)學式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,老師出了一道題:化簡

[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3].

小明同學馬上舉手,下面是小明的解題過程:

[8(a+b)5-4(a+b)4+(-a-b)3]÷[2(a+b)3]

=[8(a+b)5-4(a+b)4+(a+b)3]÷8(a+b)3

=(a+b)2- (a+b)+ .

小亮也舉起了手,說小明的解題過程不對,并指了出來.老師肯定了小亮的回答.你知道小明錯在哪兒嗎?請指出來,并寫出正確解答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)、移動終端的迅速發(fā)展,數(shù)字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機構針對“您如何看待數(shù)字化閱讀”問題進行了隨機問卷調(diào)查(如圖1),并將調(diào)查結果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:
(1)求出本次接受調(diào)查的總人數(shù),并將條形統(tǒng)計圖補充完整;
(2)表示觀點B的扇形的圓心角度數(shù)為度;
(3)2016年底慈溪人口總數(shù)約為200萬(含外來務工人員),請根據(jù)圖中信息,估計慈溪市民認同觀點D的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:| ﹣2|+20100﹣(﹣ 1+3tan30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點DAB上,AD=AC,AF⊥CDCD于點E,交CB于點F,則CF的長是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=8,BC=10,以B為圓心,任意長為半徑畫弧分別交BA、BC于點M和N,再分別以M、N為圓心,大于 MN長為半徑畫弧,兩弧交于點P,連結BP并延長交AC于點D,若△BDC的面積為20,則△ABD的面積為(
A.20
B.18
C.16
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖

(1)2018在第________________;

(2)由五個數(shù)組成的

這五個數(shù)的和可能是2019,為什么?

如果這五個數(shù)的和是60,直接寫出這五個數(shù);

(3)如果這五個數(shù)的和能否是2025,若能請求出這5個數(shù);若不能請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級為建立學習興趣小組,對語文、數(shù)學、英語、物理、化學、思想品德、歷史、綜合共八個科目的喜歡情況進行問卷調(diào)查(每人只選一項),下表是隨機抽取部分學生的問卷進行統(tǒng)計的結果:

科目

語文

數(shù)學

英語

物理

化學

思想品德

歷史

綜合

人數(shù)

6

10

11

12

10

9

8

14


根據(jù)表中信息,解答下列問題:
(1)本次隨機抽查的學生共有人;
(2)本次隨機抽查的學生中,喜歡科目的人數(shù)最多;
(3)根據(jù)上表中的數(shù)據(jù)補全條形統(tǒng)計圖;
(4)如果該校九年級有600名學生,那么估計該校九年級喜歡綜合科目的學生有多少人.

查看答案和解析>>

同步練習冊答案