【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E,B.
(1)求二次函數y=ax2+bx+c的解析式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積.
【答案】(1)y=﹣x2+4x+5(2)點P(, )時,S四邊形APCD最大=
【解析】(1)利用頂點式即可求出二次函數解析式;
(2)先求出直線AB的解析式,設出點P坐標(x,-x2+4x+5),建立函數關系式S四邊形APCD=×AC×PD=2(-x2+5x)=-2x2+10x,根據二次函數求出極值即可.
解:(1)設拋物線解析式為y=a(x﹣2)2+9,
∵拋物線與y軸交于點A(0,5),
∴4a+9=5,
∴a=﹣1,
y=﹣(x﹣2)2+9=﹣x2+4x+5,
(2)當y=0時,﹣x2+4x+5=0,
∴x1=﹣1,x2=5,
∴E(﹣1,0),B(5,0),
設直線AB的解析式為y=mx+n,
∵A(0,5),B(5,0),
∴m=﹣1,n=5,
∴直線AB的解析式為y=﹣x+5;
設P(x,﹣x2+4x+5),
∴D(x,﹣x+5),
∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,
∵AC=4,
∴S四邊形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x=﹣(x﹣)2+,
∵﹣1<0
∴當x=時,
∴即:點P(, )時,S四邊形APCD最大=.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結論的序號是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,的坐標分別為,,現(xiàn)同時將點,分別向上平移個單位,再向右平移個單位,分別得到點,的對應點,,連接,,.(三角形可用符號表示,面積用符號表示)
(1)直接寫出點,的坐標.
(2)在軸上是否存在點,連接,,使,若存在,請求出點的坐標;若不存在,請說明理由.
(3)點在直線上運動,連接,.
①若在線段之間時(不與,重合),求的取值范圍;
②若在直線上運動,請直接寫出,,的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知.點C在點的右側, ,平分么,平分所在的直線交于點,點在之間。
(1)如圖1,點在點A的左側,若 ,求的度數?
(2)如圖2,點在點A的右側,若,直接寫出的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學校組織的“學習強國”閱讀知識競賽中,有901班和902班兩個班參加比賽且人數相同,成績分為A,B,C,D四個等級,其中相應等級的得分依次記為100分,90分,80分和70分.年級組長李老師將901班和902班的成績進行整理并繪制成如下的統(tǒng)計圖:
平均數(分) | 中位數(分) | 眾數(分) | B級及以上人數 | |
901班 | 87.6 | 90 | 18 | |
902班 | 87.6 | 100 |
(1)在本次競賽中,902班C級及以上的人數有多少?
(2)請你將表格補充完整:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E,F,M分別是正方形ABCD三邊的中點,CE與DF交于N,連接AM,AN,MN對于下列四個結論:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN. 其中錯誤的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一座拱橋的截面輪廓為拋物線型(如圖1),拱高6米,跨度20米,相鄰兩支柱間的距離均為5米.
(1)將拋物線放在所給的直角坐標系中(如圖2所示),其表達式是的形式. 請根據所給的數據求出的值.
(2)求支柱MN的長度.
(3)拱橋下地平面是雙向行車道(正中間DE是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2米、高3米的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生對各種球類運動的喜愛程度,小明采取隨機抽樣的方法對他所在學校的部分學生進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一種項目),對調查結果進行統(tǒng)計后,繪制了下面的統(tǒng)計圖(1)和圖(2).
(1)此次被調查的學生共有___人,m=_____;
(2)求喜歡“乒乓球”的學生的人數,并將條形統(tǒng)計圖補充完整;
(3)若該校有2000名學生,估計全校喜歡“足球”的學生大約有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com