【題目】一座拱橋的截面輪廓為拋物線型(如圖1),拱高6米,跨度20米,相鄰兩支柱間的距離均為5米.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是的形式. 請根據(jù)所給的數(shù)據(jù)求出的值.
(2)求支柱MN的長度.
(3)拱橋下地平面是雙向行車道(正中間DE是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2米、高3米的三輛汽車(汽車間的間隔忽略不計(jì))?請說說你的理由.
【答案】(1);(2)5.5米;(3)能,理由見解析.
【解析】試題分析:(1)根據(jù)題目可知A.B,C的坐標(biāo),設(shè)出拋物線的解析式代入可求解.
(2)設(shè)N點(diǎn)的坐標(biāo)為(5,yN)可求出支柱MN的長度.
(3)設(shè)DN是隔離帶的寬,NG是三輛車的寬度和.做GH垂直AB交拋物線于H則可求解.
試題解析: (1) 根據(jù)題目條件,A、B、C的坐標(biāo)分別是(-10,0)、(0,6)、(10,0).
將B、C的坐標(biāo)代入,得
解得.
∴拋物線的表達(dá)式是.
(2) 可設(shè)N(5, ),
于是.
從而支柱MN的長度是10-4.5=5.5米.
(3) 設(shè)DE是隔離帶的寬,EG是三輛車的寬度和,
則G點(diǎn)坐標(biāo)是(7,0)(7=2÷2+2×3).
過G點(diǎn)作GH垂直AB交拋物線于H,則.
根據(jù)拋物線的特點(diǎn),可知一條行車道能并排行駛這樣的三輛汽車.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,12×12的正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,正方形的頂點(diǎn)叫做格點(diǎn).矩形ABCD的四個(gè)頂點(diǎn)A,B,C,D都在格點(diǎn)上,將△ADC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)得到△AD′C′,點(diǎn)C與點(diǎn)C′為對應(yīng)點(diǎn).
(1)在正方形網(wǎng)格中確定D′的位置,并畫出△AD′C′;
(2)若邊AB交邊C′D′于點(diǎn)E,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎使得湖北的物資緊缺,為支援疫區(qū),某村捐贈蔬菜30噸,水果13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往港口,已知一輛甲種貨車可裝蔬菜和水果共5噸,且一輛甲種貨車可裝的蔬菜重量(單位:噸)是其可裝的水果重量的4倍,一輛乙種貨車可裝蔬菜水果各2噸;
(1)一輛甲種貨車可裝載蔬菜、水果各多少噸?
(2)該村安排甲、乙兩種貨車時(shí)有幾種方案?請你幫助設(shè)計(jì)出來;
(3)若甲種貨車每輛要付運(yùn)輸費(fèi)2000元,乙種貨車每輛要付運(yùn)輸費(fèi)1500元,則該村應(yīng)選擇哪種方案?使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□AOBC的頂點(diǎn)O(0,0),,點(diǎn)B(12,0),按以下步驟作圖:①以點(diǎn)O為圓心、適當(dāng)長度為半徑作弧,分別交OA、OB于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心、大于的長為半徑作弧,兩弧∠AOB在內(nèi)交于點(diǎn)F;③作射線OF,交邊AC于點(diǎn)G,則CG的長為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有2個(gè)完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字-2,0和1,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q在x軸上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個(gè)不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由;
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時(shí),如圖3請直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰計(jì)劃中考后參加“我的中國夢”夏令營活動,需要一名家長陪同,爸爸、媽媽用猜拳的方式確定由誰陪同,即爸爸、媽媽隨機(jī)做出“石頭”、 “剪刀”“布” 三種手勢中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀” 勝“布”,“布” 勝“石頭”,手勢相同,不分勝負(fù).
(1)爸爸一次出“石頭”的概率是多少?
(2)媽媽一次獲勝的概率是多少?請用列表或畫樹狀圖的方法加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com