【題目】如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點(diǎn)O到邊AB的距離為__________

【答案】2

【解析】

根據(jù)角平分線的性質(zhì)得到OEOFOD,設(shè)OEx,然后利用三角形面積公式得到SABCSOABSOACSOCB,于是可得到關(guān)于x的方程,從而可得到OF的長(zhǎng)度.

解:∵點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,

OEOFOD,

設(shè)OEx

SABCSOABSOACSOCB,

×6×8OF×10OE×6OD×8

5x3x4x24,

x2

∴點(diǎn)OAB的距離等于2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知:點(diǎn)A(0,0),B(,0),C(0,1)△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…,則第個(gè)等邊三角形的邊長(zhǎng)等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.

(1)求證:對(duì)任意實(shí)數(shù)m,方程總有2個(gè)不相等的實(shí)數(shù)根;

(2)若方程的一個(gè)根是2,求m的值及方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象交于點(diǎn)A(3,4),其中一次函數(shù)與y軸交于B點(diǎn),且OA=OB.

(1)求這兩個(gè)函數(shù)的表達(dá)式;

(2)求AOB的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知矩形ABOC中,AC=4,雙曲線y=與矩形兩邊AB、AC分別交于D、E,E為AC邊中點(diǎn).

(1)求點(diǎn)E的坐標(biāo);

(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使DPC=90°?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,分別垂直平分,交兩點(diǎn),相交于點(diǎn).

(1)的周長(zhǎng)為15 cm,求的長(zhǎng).

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng)為15寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ab,且ab之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3AB=.試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MNaAM+MN+NB的長(zhǎng)度和最短,則此時(shí)AM+NB=

A6 B8 C10 D12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有8×8的正方形網(wǎng)格,每個(gè)小正方形邊長(zhǎng)為1,按要求操作并計(jì)算。

1)在8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

2)將點(diǎn)向下平移5個(gè)單位,再關(guān)于軸對(duì)稱得到點(diǎn),則點(diǎn)坐標(biāo)為(_______,_________);

3)畫出三角形,并求其面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案