【題目】如圖,有8×8的正方形網(wǎng)格,每個小正方形邊長為1,按要求操作并計算。
(1)在8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,使點的坐標(biāo)為,點的坐標(biāo)為;
(2)將點向下平移5個單位,再關(guān)于軸對稱得到點,則點坐標(biāo)為(_______,_________);
(3)畫出三角形,并求其面積。
【答案】(1)圖見詳解;
(2)(-2,-1);
(3).
【解析】
(1)根據(jù)A點坐標(biāo)確定坐標(biāo)原點的位置,然后再畫出平面直角坐標(biāo)系即可;
(2)根據(jù)A點坐標(biāo)寫出平移后的坐標(biāo),然后再根據(jù)關(guān)于y軸對稱點的坐標(biāo)特點:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得C點坐標(biāo);
(3)利用矩形面積減去周圍多余三角形的面積即可.
解:(1)如圖所示:
(2)如圖所示:點A向下平移5個單位得到點(2,-1),
關(guān)于y軸對稱的點C(-2,-1);
(3)如圖所示:
的面積等于矩形面積減去周圍多余三角形的面
即是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點O到邊AB的距離為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點E.且OD⊥AC,垂足為點F.
(1)如圖1,如果AC=BD,求弦AC的長;
(2)如圖2,如果E為弦BD的中點,求∠ABD的余切值;
(3)聯(lián)結(jié)BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚棋子放在七角棋盤的第0號角,現(xiàn)依逆時針方向移動這枚棋子,其各步依次移動1,2,3,…,n個角,如第一步從0號角移動到第1號角,第二步從第1號角移動到第3號角,第三步從第3號角移動到第6號角,….若這枚棋子不停地移動下去,則這枚棋子永遠(yuǎn)不能到達的角的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,點E是CD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當(dāng)△ADC′為等腰三角形時,FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點A(0,4)、B(3,8).若點P(x,0),使得∠APB最大,則x=( 。
A. 3 B. 0 C. 4 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點M,經(jīng)過B,M 兩點的⊙O交BC于點G,交AB于點F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當(dāng)BE=3,cosC=時,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com