【題目】如圖,一個正比例函數與一個一次函數的圖象交于點A(3,4),其中一次函數與y軸交于B點,且OA=OB.
(1)求這兩個函數的表達式;
(2)求△AOB的面積S.
【答案】(1)y=ax+b,y=3x﹣5;(2)
【解析】
試題分析:(1)把A點坐標代入可先求得直線OA的解析式,可求得OA的長,則可求得B點坐標,可求得直線AB的解析式;
(2)由A點坐標可求得A到y軸的距離,根據三角形面積公式可求得S.
解:
(1)設直線OA的解析式為y=kx,
把A(3,4)代入得4=3k,解得k=,
所以直線OA的解析式為y=x;
∵A點坐標為(3,4),
∴OA==5,
∴OB=OA=5,
∴B點坐標為(0,﹣5),
設直線AB的解析式為y=ax+b,
把A(3,4)、B(0,﹣5)代入得,解得,
∴直線AB的解析式為y=3x﹣5;
(2)∵A(3,4),
∴A點到y軸的距離為3,且OB=5,
∴S=×5×3=.
科目:初中數學 來源: 題型:
【題目】電子跳蚤游戲盤是如圖所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;……;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數),則點P2013與P2016之間的距離為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,A、B、C三點的坐標分別為(﹣6,7)、(﹣3,0)、(0,3).
(1)畫出△ABC,并求△ABC的面積;
(2)在△ABC中,點C經過平移后的對應點為C′(5,4),將△ABC作同樣的平移得到△A′B′C′, 畫出平移后的△A′B′C′,并寫出點A′,B′的坐標;
(3)已知點P(﹣3,m)為△ABC內一點,將點P向右平移4個單位后,再向下平移6個單位得到點Q(n,﹣3),則m= ,n= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知一次函數y=2x+1的圖象經過P1(x1 , y1)、P2(x2 , y2)兩點,若x1<x2 , 則y1y2 . (填“>”“<”或“=”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, AD是∠BAC的平分線,O是AB上一點, 以OA為半徑的⊙O經過點D.
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(0,3),△OAB沿x軸向右平移后得到△O′A′B′,點A的對應點在直線y=x上一點,則點B與其對應點B′間的距離為( )
A. B.3 C.4 D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知△ABC的三個頂點的坐標分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請直接寫出點B關于點A對稱的點的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出圖形,直接寫出點B的對應點的坐標;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com