【題目】如圖,ABC的面積為1.第一次操作:分別延長(zhǎng)AB,BCCA至點(diǎn)A1,B1C1,使A1B=ABB1C=BC,C1A=CA,順次連接A1,B1,C1,得到A1B1C1.第二次操作:分別延長(zhǎng)A1B1B1C1,C1A1至點(diǎn)A2B2,C2,使A2B1=A1B1, B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到A2B2C2,按此規(guī)律,要使得到的三角形的面積超過(guò)2017,最少經(jīng)過(guò)多少次操作 ( )

A. 4B. 5C. 6D. 7

【答案】A

【解析】

先根據(jù)已知條件求出A1B1C1A2B2C2的面積,再根據(jù)兩三角形的倍數(shù)關(guān)系求解即可.

解:ABCA1BB1底相等(AB=A1B),高為12BB1=2BC),故面積比為12,
∵△ABC面積為1
=2
同理可得,=2=2,
=+++SABC=2+2+2+1=7;
同理可證A2B2C2的面積=7×A1B1C1的面積=49,
第三次操作后的面積為7×49=343
第四次操作后的面積為7×343=2401
故按此規(guī)律,要使得到的三角形的面積超過(guò)2017,最少經(jīng)過(guò)4次操作.
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知CEAB于點(diǎn)EBDAC于點(diǎn)D,BDCE交于點(diǎn)O,且AO平分∠BAC.

(1)圖中有多少對(duì)全等三角形?請(qǐng)你一一列舉出來(lái)(不要求說(shuō)明理由).

(2)小明說(shuō):欲說(shuō)明BECD,可先說(shuō)明AOE≌△AOD得到AEAD,再說(shuō)明ADB≌△AEC得到ABAC,然后利用等式的性質(zhì)即可得到BECD,請(qǐng)問(wèn)他的說(shuō)法正確嗎?如果不正確,請(qǐng)說(shuō)明理由;如果正確,請(qǐng)按他的思路寫出推導(dǎo)過(guò)程.

(3)要得到BECD,你還有其他的思路嗎?請(qǐng)仿照小明的說(shuō)法具體說(shuō)一說(shuō)你的想法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】空中的氣溫與距地面的高度有關(guān),某地面氣溫為,且已知離地面距離每升高,氣溫下降

1)在這個(gè)變化過(guò)程中, 是自變量, 是因變量;

2)寫出該地空中氣溫與高度之間的關(guān)系式;

3)求空中氣溫為處距地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E、K分別在BC、AB上,CE=BK,點(diǎn)G在BA的延蓋

長(zhǎng)線上,且DG⊥DE.

(1)如圖(1)求證:CK=DG;

(2)如圖(2)不添加任何輔助線的條件下,直接寫出圖中所有的與四邊形BEDK面積相等

的三角形。

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價(jià)和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來(lái)確定什錦糖的單價(jià).

甲種糖果

乙種糖果

丙種糖果

單價(jià)元/千克

15

25

30

千克數(shù)

40

40

20

1求該什錦糖的單價(jià).

2為了使什錦糖的單價(jià)每千克至少降低2元,商家計(jì)劃在什錦糖中加入甲、丙兩種糖果共100千克,問(wèn)其中最多可加入丙種糖果多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)已知購(gòu)買1個(gè)足球和1個(gè)籃球共需130元,購(gòu)買2個(gè)足球和1個(gè)籃球共需180元.

(1)求每個(gè)足球和每個(gè)籃球的售價(jià);

(2)如果某校計(jì)劃購(gòu)買這兩種球共54個(gè),總費(fèi)用不超過(guò)4000元,問(wèn)最多可買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與A、C不重合),QCB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)PPE⊥ABE,連接PQABD.

(1)AE=1時(shí),求AP的長(zhǎng);

(2)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);

(3)在運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,橋孔拋物線對(duì)應(yīng)的二次函數(shù)關(guān)系式是y=﹣x2,當(dāng)水位上漲1m時(shí),水面寬CD2m,則橋下的水面寬AB_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F點(diǎn),若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案