【題目】如圖:在4×4的正方形(每個小正方形的邊長均為1)網(wǎng)格中,以A為頂點,其他三個頂點都在格點(網(wǎng)格的交點)上,且面積為2的平行四邊形共有多少個?( )

A.12B.16C.24D.25

【答案】D

【解析】

如下圖,先對網(wǎng)格進行編號,然后找出所有符合條件的平行四邊形即可.

如下圖,對網(wǎng)格編號

情況一:平行四邊形的一個點在BF上,另兩個點在MG上,有:

ABMI、ABQO、ABIGAFGI、AFOQ、AFIM6

情況二:平行四邊形的一個點在BF上,另兩個點在PH上,有:

AEHVAEVN、AENZ、AEZPACPZ、ACZNACNV、ACVH8

情況三:其他符合條件平行四邊形有:

AQNOAIYL、ATXIAHLI、APTI、AGHI、AMPI、AZRN、AVNAOKN、AQSN11

故共有:6+8+11=25

故答案為:25

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,點A的坐標為(a,a),點B的坐標(b,c),且a、b、c滿足.

(1)a沒有平方根,判斷點A在第幾象限并說明理由.

(2)ABOA、OB,若OAB的面積大于5而小于8,求a的取值范圍;

(3)若兩個動點M2m,3m-5),N(n-1,-2n-3),請你探索是否存在以兩個動點M、N為端點的線段MNAB,且MN=AB.若存在,求出MN兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當點D在線段BC上時,

①BC與CF的位置關系為:   

②BC,CD,CF之間的數(shù)量關系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學思考

如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B30°,邊AB的垂直平分線分別交ABBC于點D,E,且AE平分∠BAC

1)求∠C的度數(shù);

2)若CE1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為(04),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3).

(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.

①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;

②點的坐標為 .

(2)(1)的條件下,若點的坐標為(40),連接,畫出圖形并求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AD、CE分別是△ABC的角平分線和中線,ADCEADCE4,則BC的長等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,后求值

1(2a-3b)(3b2a)-a-2b2,其中:a=-2,b=3;

2)[(xy+2(xy-2)-2x2y2+4÷(xy),其中x=10,y=-.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:一般地,個相同的因數(shù)相乘 ,記為.如,此時,叫做以為底的對數(shù),記為(即).一般地,若,(),則叫做以為底的對數(shù),記為(即).如,則叫做以為底的對數(shù),記為(即).

1)計算以下各對數(shù)的值:__________,__________,__________.

2)觀察(1)中三數(shù)、之間滿足怎樣的關系式,、之間又滿足怎樣的關系式;

3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?__________.(,

4)根據(jù)冪的運算法則:以及對數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘇州太湖養(yǎng)殖場計劃養(yǎng)殖蟹和貝類產(chǎn)品,這兩個品種的種苗的總投放量只有50噸,根據(jù)經(jīng)驗測算,這兩個品種的種苗每投放一噸的先期投資,養(yǎng)殖期間的投資以及產(chǎn)值如下表(單位:萬元/噸)

品種

先期投資

養(yǎng)殖期間投資

產(chǎn)值

貝類產(chǎn)品

0.9

0.3

0.33

蟹產(chǎn)品

0.4

1

2

養(yǎng)殖場受經(jīng)濟條件的影響,先期投資不超過36萬元,養(yǎng)殖期間的投資不超過29萬元,設貝類的種苗投放量為x噸,

1)求x的取值范圍;

2)設這兩個品種產(chǎn)出后的總產(chǎn)值為y(萬元),試寫出yx之間的函數(shù)關系式,并求出當x等于多少時,y有最大值?最大值是多少?

查看答案和解析>>

同步練習冊答案