【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?

【答案】
(1)解:設甲車單獨運完此堆垃圾需運x趟,則乙車單獨運完此堆垃圾需運2x趟,根據(jù)題意得出:

12( + )=1,

解得:x=18,

經(jīng)檢驗得出:x=18是原方程的解,

則乙車單獨運完此堆垃圾需運:2x=36,

答:甲車單獨運完需18趟,乙車單獨運完需36趟;


(2)解:設甲車每一趟的運費是a元,由題意得:

12a+12(a﹣200)=4800,

解得:a=300,

則乙車每一趟的費用是:300﹣200=100(元),

單獨租用甲車總費用是:18×300=5400(元),

單獨租用乙車總費用是:36×100=3600(元),

3600<5400,

故單獨租用一臺車,租用乙車合算.

答:單獨租用一臺車,租用乙車合算.


【解析】(1)假設甲車單獨運完此堆垃圾需運x趟,則乙車單獨運完此堆垃圾需運2x趟,根據(jù)工作總量=工作時間×工作效率建立方程求出其解即可;(2)分別表示出甲、乙兩車單獨運每一趟所需費用,再根據(jù)關(guān)鍵語句“兩車各運12趟可完成,需支付運費4800元”可得方程,再解出方程,再分別計算出利用甲或乙所需費用進行比較即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與x軸、軸分別交于點A、B,且BC∥AO,梯形AOBC的面積為10

(1)求點A、B、C的坐標;

(2)求直線AC的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB分別與⊙O相切于點A、B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明設計了一個問題,分兩步完成:

(1)已知關(guān)于x的一元一次方程,請畫出數(shù)軸,并在數(shù)軸上標注a對應的點,分別記作A,B;

(2)在第1問的條件下,在數(shù)軸上另有一點C對應的數(shù)為y,CA的距離是CB的距離的5,C在表示5的點的左側(cè),y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】回答下列問題:

1)如圖所示的甲、乙兩個平面圖形能折什么幾何體?

2)由多個平面圍成的幾何體叫做多面體.若一個多面體的面數(shù)為f,頂點個數(shù)為v,棱數(shù)為e,分別計算第(1)題中兩個多面體的f+v﹣e的值?你發(fā)現(xiàn)什么規(guī)律?

3)應用上述規(guī)律解決問題:一個多面體的頂點數(shù)比面數(shù)大8,且有50條棱,求這個幾何體的面數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次實驗中,小強把一根彈簧的上端固定,在其下端懸掛物體.下面是他測得的彈簧的長度y與所掛物體的質(zhì)量石的一組對應值:

所掛物體的質(zhì)量x/kg

0

1

2

3

4

5

彈簧的長度y/cm

20

22

24

26

25

30

(1)上表反映了哪兩個變量之間的關(guān)系?哪個是自變量?哪個是因變量?

(2)填空:

①當所掛的物體為3kg時,彈簧長是____.不掛重物時,彈簧長是____.

②當所掛物體的質(zhì)量為8kg(在彈簧的彈性限度范圍內(nèi))時,彈簧長度是___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=15,BC=14,AC=13,求ABC的面積.

某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

思路:(1) ADBCD,設BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為橋梁,建立方程模型求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是線段BM,CM的中點.

(1)求證:ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當ADAB=__________時,四邊形MENF是正方形(只寫結(jié)論,不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,以大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,得四邊形ABEF.

求證:四邊形ABEF是菱形.

查看答案和解析>>

同步練習冊答案