【題目】如圖,△ABC與△CDE為等腰直角三角形,∠BAC=∠DEC=90°,連接AD,取AD中點P,連接BP,并延長到點M,使BP=PM,連接AM、EM、AE,將△CDE繞點C順時針旋轉(zhuǎn).
(1)如圖①,當(dāng)點D在BC上,E在AC上時,AE與AM的數(shù)量關(guān)系是______,∠MAE=______;
(2)將△CDE繞點C順時針旋轉(zhuǎn)到如圖②所示的位置,(1)中的結(jié)論是否仍然成立,若成立,請給出證明,若不成立,請說明理由;
(3)若CD=BC,將△CDE由圖①位置繞點C順時針旋轉(zhuǎn)α(0°<α<360°),當(dāng)ME=CD時,請直接寫出α的值.
【答案】(1)AM=AE , 45°;(2)成立,見解析;(3)α的值為60°或300°.
【解析】
(1)證明四邊形ABDM是平行四邊形即可解決問題.
(2)如圖2中,連接BD,DM,BD交AC于點O,交AE于G.證明△BCD∽△ACE,推出∠CBD=∠CAE,=,即可解決問題.
(3)如圖2中,首先證明△AEM是等腰直角三角形,分兩種情形畫出圖形分別求解即可.
解:(1)結(jié)論:AM=AE,∠MAE=45°.
理由:如圖1中,
∵AP=PD,BP=PM,
∴四邊形ABDM是平行四邊形,
∴AM∥BC,
∴∠MAE=∠C,
∵AB=AC,∠BAC=90°,
∴∠C=45°,
∴∠MAE=45°,
∵∠AEM=∠DEC=90°,
∴∠AME=∠EAM=45°,
∴MA=AE.
故答案為:AM=AE,45°.
(2)如圖2中,連接BD,DM,BD交AC于點O,交AE于G.
∵BC=AC,CD=CE,
∴=,
∵∠ACB=∠DCE=45°,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,=,
∴BD=AE,
∵∠BOC=∠AOG,
∴∠AGO=∠BCO=45°,
∵AP=PD,BP=PM,
∴四邊形ABDM是平行四邊形,
∴AM∥BD,AM=BD=AE,
∴∠MAE=∠BGA=45°,
∵EH⊥AM,
∴△AHE是等腰直角三角形,
∴AH=AE,∵AM=AE,
∴AH=MH,
∴EA=EM,
∴∠EAM=∠EMA=45°,
∴∠AEM=90°.
(3)如圖2中,作EH⊥AM于H.
∵EH⊥AM,∠MAE=45°,
∴△AHE是等腰直角三角形,
∴AH=AE,∵AM=AE,
∴AH=MH,
∴EA=EM,
∴∠EAM=∠EMA=45°,
∴∠AEM=90°.
如圖3-1中,
∵EM=EA=CD,設(shè)CD=a,則CE=a,BC=2a,AC=2a,EA=a,
∴AC2=AE2+EC2,
∴∠AEC=90°,
∴tan∠ACE==,
∴∠ACE=60°,
∴旋轉(zhuǎn)角α=60°.
如圖3-2中,同法可證∠AEC=90°,∠ACE=60°,此時旋轉(zhuǎn)角α=300°.
綜上所述,滿足條件的α的值為60°或300°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為,與軸相交于點,對稱軸為直線,點是線段的中點.
(1)求拋物線的表達式;
(2)寫出點的坐標(biāo)并求直線的表達式;
(3)設(shè)動點,分別在拋物線和對稱軸l上,當(dāng)以,,,為頂點的四邊形是平行四邊形時,求,兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O內(nèi)接三角形,∠ACB=45°,∠AOC=150°,過點C作⊙O切線交AB延長線于點D.
(1)求證:CD=CB;(2)如果⊙O的半徑為,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點,求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年央視315晚會曝光了衛(wèi)生不達標(biāo)的“毒辣條”,“食品安全”受到全社會的廣泛關(guān)注,“安全教育平臺”也推出了“將毒食品拋出窗外”一課我校為了了解九年級家長和學(xué)生參“將毒食品拋出窗外”的情況,在我校九年級學(xué)生中隨機抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:
A僅學(xué)生自己參與;B.家長和學(xué)生一起參與;C僅家長自己參與;D.家長和學(xué)生都未參
請根據(jù)圖中提供的信息解答下列問題
(1)在這次抽樣調(diào)查中,共調(diào)查了______名學(xué)生
(2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中計算C類所對應(yīng)扇形的圓心角的度數(shù)
(3)根據(jù)抽樣調(diào)查結(jié)果,估計我校九年級2000名學(xué)生中“家長和學(xué)生都未參與”的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一幅長60 cm、寬40 cm的長方形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個掛圖的面積是2816 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)x2 – 6x=7 (2)2x-6x -1=0 (3)3x(x+2)=5(x+2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),與的部分對應(yīng)值如下表所示:
… | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 6 | 1 | -2 | -3 | -2 | m | … |
下面有四個論斷:
①拋物線的頂點為;
②;
③關(guān)于的方程的解為;
④.
其中,正確的有___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,為直徑,C為上一點.
(Ⅰ)如圖①,過點C作的切線,與的延長線相交于點P,若,求的大小;
(Ⅱ)如圖②,D為弧的中點,連接交于點E,連接并延長,與的延長線相交于點P,若,求的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com