【題目】如圖,AB是⊙O的直徑,AC是上半圓的弦,過點(diǎn)C作⊙O的切線DE交AB的延長(zhǎng)線于點(diǎn)E,過點(diǎn)A作切線DE的垂線,垂足為D,且與⊙O交于點(diǎn)F,設(shè)∠DAC,∠CEA的度數(shù)分別是α,β.
(1)用含α的代數(shù)式表示β,并直接寫出α的取值范圍;
(2)連接OF與AC交于點(diǎn)O′,當(dāng)點(diǎn)O′是AC的中點(diǎn)時(shí),求α,β的值.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)首先證明∠DAE=2α,在Rt△ADE中,根據(jù)兩銳角互余,可知2α+β=90°,(0°<α<45°);
(2)連接OF交AC于O′,連接CF.只要證明四邊形AFCO是菱形,推出△AFO是等邊三角形即可解決問題;
試題解析:(1)連接OC.
∵DE是⊙O的切線,
∴OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAE=2α,
∵∠D=90°,
∴∠DAE+∠E=90°,
∴2α+β=90°(0°<α<45°).
(2)連接OF交AC于O′,連接CF.
∵AO′=CO′,
∴AC⊥OF,
∴FA=FC,
∴∠FAC=∠FCA=∠CAO,
∴CF∥OA,∵AF∥OC,
∴四邊形AFCO是平行四邊形,
∵OA=OC,
∴四邊形AFCO是菱形,
∴AF=AO=OF,
∴△AOF是等邊三角形,
∴∠FAO=2α=60°,
∴α=30°,
∵2α+β=90°,
∴β=30°,
∴α=β=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出一個(gè)圖象經(jīng)過點(diǎn)(﹣2,0)且函數(shù)y隨x增大而增大的一次函數(shù)解析式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鋼鐵廠把增產(chǎn)120噸記作+120噸,那么減產(chǎn)41噸應(yīng)記作____________噸 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(2,﹣1)關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)是( �。�
A. (2,1) B. (﹣2,﹣1) C. (﹣1,2) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將樣本容量為100的樣本編制成組號(hào)①﹣⑧的八個(gè)組,簡(jiǎn)況如表所示:
組號(hào) | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ |
頻數(shù) | 14 | 11 | 12 | 13 | 13 | 12 | 10 |
那么第⑤組的頻率是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com