【題目】如圖,在中,,為邊上的中線,于點
(1)求證:BD·AD=DE·AC.
(2)若AB=13,BC=10,求線段DE的長.
(3)在(2)的條件下,求的值.
【答案】(1)見解析;(2);(3).
【解析】
(1)先利用等腰三角形的性質證明∠B=∠C,AD⊥BC,然后再證明△BDE∽△CAD即可;
(2)利用勾股定理求出AD,再根據(jù)(1)的結論即可求出DE;
(3)在Rt△BDE中,利用銳角三角函數(shù)求解即可.
解:(1)證明:∵AB=AC, AD為BC邊上的中線,
∴∠B=∠C,AD⊥BC,即∠ADC=90°,
又∵DE⊥AB于點E,即∠DEB=90°,
∴∠ADC=∠DEB,
∴△BDE∽△CAD,
∴,
∴BD·AD=DE·AC;
(2)∵AD為BC邊上的中線,BC=10,
∴BD=CD=5,
在Rt△ABD中,AB=13,BD=5,
∴AD= ,
由(1)得BD·AD=DE·AC,
又∵AC=AB= 13,
∴5×12=13·DE,
∴DE=;
(3)由(2)知,DE=,BD=5,
∴在Rt△BDE中,.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c()的圖像如圖所示,則下列結論:(1)ac>0;(2)方程ax2+bx+c=0的兩根之積小于0;(3)a+b+c<0;(4)ac+b+1 <0,其中正確的個數(shù)( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經中共中央決定設立河北雄安新區(qū),這一重大措施必將帶動首都及周邊區(qū)域向更高水平發(fā)展,同時也會帶來更多商機.某水果經銷商在第一周購進一批水果1160件,預計在第二周進行試銷,購進價格為每件10元,若售價為每件12元,則可全部售出;若售價每漲價0.1元,銷量就減少2件.
(1)若該經銷商在第二周的銷量不低于1100件,則售價應不高于多少元?
(2)由于銷量較好,第三周水果進價比第一周每件增加了20%,該經銷商增加了進貨量,并加強了宣傳力度,結果第三周的銷量比第二周在(1)條件下的最低銷量增加了m%,但售價比第二周在(1)條件下的最高售價減少了m%,結果第三周利潤達到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個轉盤.轉盤分成8個相同的圖形,顏色分為紅、綠、黃三種.指針的位置固定,轉動轉盤后任其茲有停止,其中的某個扇形會恰好停在指針所指的位置(指針指向兩個圖形的交線時,當作指向右邊的圖形).求下列事件的概率:
(1)指針指向紅色;
(2)指針指向黃色或綠色。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解我市居民用水情況,在某小區(qū)隨機抽查了20戶家庭,并將這些家庭的月用水量進行統(tǒng)計,結果如下表:
月用水量(噸) | 4 | 5 | 6 | 8 | 13 |
戶數(shù) | 4 | 5 | 7 | 3 | 1 |
則關于這20戶家庭的月用水量,下列說法正確的是( )
A.中位數(shù)是5B.平均數(shù)是5C.眾數(shù)是6D.方差是6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m圖象過點A(1,0),交y軸于點,為y軸負半軸上一點,且,過、兩點的拋物線交直線于點,且CD//x軸.
(1)求這條拋物線的解析式;
(2)觀察圖象,寫出使一次函數(shù)值小于二次函數(shù)值時的取值范圍;
(3)在題中的拋物線上是否存在一點,使得為直角?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題背景)如圖1所示,在中,,,點D為直線上的個動點(不與B、C重合),連結,將線段繞點D按順時針方向旋轉90°,使點A旋轉到點E,連結.
(問題初探)如果點D在線段上運動,通過觀察、交流,小明形成了以下的解題思路:過點E作交直線于F,如圖2所示,通過證明______,可推證是_____三角形,從而求得______°.
(繼續(xù)探究)如果點D在線段的延長線上運動,如圖3所示,求出的度數(shù).
(拓展延伸)連接,當點D在直線上運動時,若,請直接寫出的最小值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線y1=與直線y2=ax+b交于點A(﹣4,1)和點B(m,﹣4).
(1)求雙曲線和直線的解析式;
(2)直接寫出線段AB的長和y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知頂點為的拋物線與軸交于,兩點,直線過頂點和點.
(1)求的值;
(2)求函數(shù)的解析式;
(3)拋物線上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com