【題目】如圖所示,的直徑,、為圓周上兩點(diǎn),且,過點(diǎn)作,交的延長線于點(diǎn).
(1)求證:為切線;
(2)填空:①當(dāng)四邊形為菱形,則的度數(shù)為________;
②當(dāng)時(shí),四邊形的面積為________.
【答案】(1)見詳解;(2)①30°;②
【解析】
(1)根據(jù)題意可知,OD為半徑,只需證明OD⊥DC即可;
(2)①若四邊形AODE為菱形,可得出△AEO為等邊三角形,結(jié)合∠AEB=90°,BE∥CD,得出∠C=∠ABE即可;
②根據(jù)條件,可證明△DOB為等邊三角形,利用Rt△DOC和Rt△DON計(jì)算出△ODC的面積,以及菱形AODE的面積,相加即可得出四邊形ACDE的面積.
(1)∵,
∴OD⊥BE,
∵BE∥CD,
∴OD⊥DC,
∵OD為半徑,
∴CD為的切線;
(2)①∵四邊形AODE為菱形,
∴AE=OE=AO,
∴△AEO為等邊三角形,
∴∠EAO=60°,
∵∠AEB=90°,
∴∠ABE=30°,
∵BE∥CD,
∴∠C=∠ABE=30°,
故答案為:30°;
②作DN⊥AC交AC于N,
∵DB=DO=OB=AB,
∴△DOB為等邊三角形,
∴∠DOB=60°,
在Rt△DOC和Rt△DON中,OD=2,∠DOC=60°,
∵DC=2,DN=,∠C=30°,
∴,
∵AODE為菱形,
∴,
∴四邊形ACDE的面積=+=,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測試,各項(xiàng)成績?nèi)缦卤恚海▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計(jì)與概率 | 綜合與實(shí)踐 | |
學(xué)生甲 | 93 | 93 | 89 | 90 |
學(xué)生乙 | 94 | 92 | 94 | 86 |
(1)分別計(jì)算甲、乙同學(xué)成績的中位數(shù);
(2)如果數(shù)與代數(shù),空間與圖形,統(tǒng)計(jì)與概率,綜合與實(shí)踐的成績按4:3:1:2計(jì)算,那么甲、乙同學(xué)的數(shù)學(xué)綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),與函數(shù)的圖象的一個(gè)交點(diǎn)為.
(1)求,,的值;
(2)將線段向右平移得到對應(yīng)線段,當(dāng)點(diǎn)落在函數(shù)的圖象上時(shí),求線段掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時(shí),與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,點(diǎn)C,D在⊙O上,連接AD,OC.
(1)如圖1,求證:AD∥OC;
(2)如圖2,過點(diǎn)C作CE⊥AB于點(diǎn)E,求證:AD=2OE;
(3)如圖3,在(2)的條件下,點(diǎn)F在OC上,且OF=BE,連接DF并延長交⊙O于點(diǎn)G,過點(diǎn)G作CH⊥AD于點(diǎn)H,連接CH,若∠CFG=135°,CE=3,求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在半徑為的上,為上一動(dòng)點(diǎn),為軸上一定點(diǎn),且當(dāng)點(diǎn)從點(diǎn)逆時(shí)針運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)的運(yùn)動(dòng)路徑長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線過點(diǎn),與軸交于點(diǎn),連接將沿所在的直線翻折,得到連接.
(1)若求拋物線的解析式.
(2)如圖1,設(shè)的面積為的面積為,若,求的值.
(3)如圖2,若點(diǎn)是半徑為的上一動(dòng)點(diǎn),連接當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),的值最大,請求出這個(gè)最大值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當(dāng)將遮陽傘撐開至OD位置時(shí),測得∠ODB=45°,當(dāng)將遮陽傘撐開至OE位置時(shí),測得∠OEC=30°,且此時(shí)遮陽傘邊沿上升的豎直高度BC為20cm,求若當(dāng)遮陽傘撐開至OE位置時(shí)傘下陰涼面積最大,求此時(shí)傘下半徑EC的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,.
(1)如圖1,折疊使點(diǎn)落在邊上的點(diǎn)處,折痕交、分別于點(diǎn)、,若,則________.
(2)如圖2,折疊使點(diǎn)落在邊上的點(diǎn)處,折痕交、分別于點(diǎn)、.若,求證:四邊形是菱形;
(3)在(1)(2)的條件下,線段上是否存在點(diǎn),使得和相似?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com