【題目】如圖,拋物線過點,且與直線交于B、C兩點,點B的坐標為.
(1)求拋物線的解析式;
(2)點D為拋物線上位于直線上方的一點,過點D作軸交直線于點E,點P為對稱軸上一動點,當線段的長度最大時,求的最小值;
(3)設點M為拋物線的頂點,在y軸上是否存在點Q,使?若存在,求點Q的坐標;若不存在,請說明理由.
【答案】(1)拋物線的解析式;(2)的最小值為;(3)點Q的坐標:、.
【解析】
(1)將點B的坐標為代入,,B的坐標為,將,代入,解得,,因此拋物線的解析式;
(2)設,則,,當時,有最大值為2,此時,作點A關于對稱軸的對稱點,連接,與對稱軸交于點P.,此時最;
(3)作軸于點H,連接、、、、,由,,可得,因為,,所以,可知外接圓的圓心為H,于是設,則,或,求得符合題意的點Q的坐標:、.
解:(1)將點B的坐標為代入,
,
∴B的坐標為,
將,代入,
解得,,
∴拋物線的解析式;
(2)設,則,
,
∴當時,有最大值為2,
此時,
作點A關于對稱軸的對稱點,連接,與對稱軸交于點P.
,此時最小,
∵,
∴,
,
即的最小值為;
(3)作軸于點H,連接、、、、,
∵拋物線的解析式,
∴,
∵,
∴,
∵,
,
∴,
可知外接圓的圓心為H,
∴
設,
則,
或
∴符合題意的點Q的坐標:、.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點E為BC上一點,將△ABE沿AE折疊得到△AEF,點H為CD上一點,將△CEH沿EH折疊得到△EHG,且F落在線段EG上,當GF=GH時,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于A,B兩點,且與反比例函數(shù)y=(x>0)的圖象交于點C,若S△AOB=S△BOC=1,則k=( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x + x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.
(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B. C兩點的直線交拋物線的對稱軸于點D,求D點的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F.
(1)若AB=4,BC=6,求EC的長;
(2)若∠EAD=50°,求∠BAE和∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,已知AD=10cm,tanB=2,AE⊥BC于點E,且AE=4cm,點P是BC邊上一動點.若△PAD為直角三角形,則BP的長為_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了擴大經(jīng)營,決定購進6臺機器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預算,本次購買機器所耗資金不能超過34萬元.
甲 | 乙 | |
價格(萬元/臺) | 7 | 5 |
每臺日產(chǎn)量(個) | 100 | 60 |
(1)按該公司要求可以有幾種購買方案?
(2)如果該公司購進的6臺機器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,A在B的正東方向,有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測站之間的距離;
(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com