【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:;;;其中所有正確結(jié)論的序號是( )

A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤

【答案】C

【解析】試題解析:當(dāng)x=1時,y=a+b+c0,故正確,

當(dāng)x=-1時,y=a-b+c2,故正確,

由拋物線的開口向下知a0,與y軸的交點為在y軸的正半軸上,

c0,對稱軸為x=-=-1,得2a=b,

∴a、b同號,即b0

∴abc0,故正確,

④∵對稱軸為x=-=-1,

點(0,2)的對稱點為(-22),

當(dāng)x=-2時,y=4a-2b+c=2,故錯誤,

⑤∵x=-1時,a-b+c1,又-=-1,即b=2a,

∴c-a1,故正確.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點、點表示的數(shù)為、,則、兩點之間的距離;線段的中點表示的數(shù)為.已知數(shù)軸上有、兩點,分別表示的數(shù)為,點以每秒個單位的速度沿數(shù)軸向右勻速運動,點以每秒個單位向左勻速運動.設(shè)運動時間為秒(

)運動開始前,兩點的距離為__________;線段的中點所表示的數(shù)為__________

)它們按上述方式運動,、兩點兩點經(jīng)過多少秒會相遇,相遇點所表示的數(shù)是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作發(fā)現(xiàn)

如圖2,固定ABC,使DEC繞點C旋轉(zhuǎn),當(dāng)點D恰好落在AB邊上時,填空:

①線段DEAC位置關(guān)系是_________;

②設(shè)BDC的面積為S1,AEC的面積為S2,則S1S2的數(shù)量關(guān)系是____________.

(2)猜想論證

當(dāng)DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC、CE邊上的高,請你證明小明的猜想.

(3)拓展探究

已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//ABBC于點E(如圖4).若在射線BA上存在點F,使,請直接寫出相應(yīng)的BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)k≠0)在第一象限的圖象交于A(1,n)和B兩點.

(1)求反比例函數(shù)的解析式及點B坐標(biāo);

(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)k≠0)的值時,寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1所示,將一副三角尺的直角頂點重合在點O處.

①∠AOC與∠BOD相等嗎?說明理由;

②∠AOD與∠BOC數(shù)量上有什么關(guān)系嗎?說明理由.

2)若將這副三角尺按圖2所示擺放,直角頂點重合在點O處,不添加字母,分析圖中現(xiàn)有標(biāo)注字母所表示的角;

①找出圖中相等關(guān)系的角;

②找出圖中互補關(guān)系的角,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)的圖象交于A、B兩點,點A的坐標(biāo)為(2,1).

1求正比例函數(shù)、反比例函數(shù)的表達式;

2)求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一副三角板拼合在一起,邊重合,,,.當(dāng)點從點出發(fā)沿向下滑動時,點同時從點出發(fā)沿射線向右滑動.當(dāng)點從點滑動到點時,連接,則的面積最大值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=x2+mx+b的圖象C′都經(jīng)過點B0,1)和點C,且圖象C′過點A2,0).

1)求二次函數(shù)的最大值;

2)設(shè)使y2y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;

3)若點FG在圖象C′上,長度為的線段DE在線段BC上移動,EFDG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時,在x軸上求點P,使PD+PE最小,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬州某企業(yè)捐資購買了一批重120噸的物資支援某貧困鄉(xiāng)鎮(zhèn),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下(假設(shè)每輛車均滿載):甲載重5噸,運費400元/車,乙載重8噸,運費500元/車,丙載重10噸,運費600元/車,該公司計劃用甲、乙、丙三種車型同時參與運送并完成任務(wù),已知它們的總輛數(shù)為15輛,要使費用最省,所使用的甲、乙、丙三種車型的輛數(shù)分別是______。

查看答案和解析>>

同步練習(xí)冊答案