【題目】如圖,BE⊙O的直徑,點AEB的延長線上,弦PD⊥BE,垂足為C,連接OD

∠AOD=∠APC

1)求證:AP⊙O的切線;

2)若⊙O的半徑是4AP=4,求圖中陰影部分的面積.

【答案】1)證明詳見解析;(2

【解析】

1)連接OP,證明OPAP,利用等腰三角形的性質(zhì)和直角三角形的性質(zhì)證明即可;(2)根據(jù)扇形POD面積減去△OPD的面積即為陰影部分的面積,求出相關(guān)數(shù)據(jù)代入計算.

1)證明:連結(jié)OP,PDBE,如圖.

∴∠OCD=90°,

∴∠ODC+COD=90°,

OD=OP

∴∠ODC=OPC,

∵∠COD=APC,

∴∠OPC+APC=90°,

∴∠APO=90°,APPO

P在⊙O,AP是⊙O的切線.

2)在RtAPO中,tanAOP=,

∴∠AOP=60°,∴∠OPC=30°,

OC=2,∴PC= ,

PD=,

OD=OP,OBPD

∴∠POB=COD=60°,

∴∠POD=120°,

∴陰影部分面積為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線x軸交于A-1,0),B30)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標為m0m3),連接CD,BD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,MN為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內(nèi)作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:(保留作圖痕跡,不寫做法)

(1)已知:如圖,四邊形ABCD與四邊形EFGH成中心對稱,試畫出它們的對稱中心O。

(2)考古學(xué)家在考古過程中發(fā)現(xiàn)一個圓盤,但是因為歷史悠久,已經(jīng)有一部分缺失,如圖所示.現(xiàn)希望復(fù)原圓盤,需要先找到圓盤的圓心,才能繼續(xù)完成后續(xù)修復(fù)工作.請利用直尺(無刻度)和圓規(guī),在圖中找出圓心O.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半圓⊙O中,直徑AB=4,點C、D是半圓上兩點,且∠BOC=84°,∠BOD=36°P為直徑上一點,則PC+PD的最小值為(

A.4B.2C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一款優(yōu)雅且穩(wěn)定的拋物線型落地燈.防滑螺母C為拋物線支架的最高點,燈罩D距離地面1.86米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為24厘米,∠A=60°,點P從點A出發(fā)沿線路AB→BD作勻速運動,點Q從點D同時出發(fā)沿線路DC→CB→BA作勻速運動.

1)求BD的長;

2)已知點P、Q運動的速度分別為4厘米/秒,5厘米/秒,經(jīng)過12秒后,P、Q分別到達M、N兩點,若按角的大小進行分類,請你確定△AMN是哪一類三角形,并說明理由;

3)設(shè)(2)中的點P、Q分別從M、N同時沿原路返回,點P的速度不變,點Q的速度改變?yōu)?/span>a厘米/秒,經(jīng)過3秒后,P、Q分別到達EF兩點,若△BEF與(2)中的△AMN相似,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人:

1)第一輪后患病的人數(shù)為 ;(用含x的代數(shù)式表示)

2)在進入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BO是△ABCAC邊上的高,其中BO=8,AO=6,CO=4,點M2個單位長度/秒的速度自CA在線段CA上作勻速運動,同時點N5個單位長度/秒的速度自AB在射線AB上作勻速運動,MNOB于點P.M運動到點A時,點M、N同時停止運動.設(shè)點M運動時間為t.

(1)線段AN的取值范圍是______.

(2)0t2時,

①求證:MNNP為定值.

②若△BNP與△MNA相似,求CM的長.

(3)2t5時,若△BNP是等腰三角形,求CM的長.

查看答案和解析>>

同步練習(xí)冊答案