【題目】如圖,矩形ABCD的頂點(diǎn)A和對(duì)稱(chēng)中心均在反比例函數(shù)y=(k≠0,x>0)上,若矩形ABCD的面積為8,則k的值為___.
【答案】4.
【解析】
設(shè)A點(diǎn)的坐標(biāo)為(m,n)則根據(jù)矩形的性質(zhì)得出矩形中心的縱坐標(biāo)為,根據(jù)中心在反比例函數(shù)y=上,求出中心的橫坐標(biāo)為,進(jìn)而可得出BC的長(zhǎng)度,根據(jù)矩形ABCD的面積即可求得.
如圖,延長(zhǎng)DA交y軸于點(diǎn)E,
∵四邊形ABCD是矩形,
設(shè)A點(diǎn)的坐標(biāo)為(m,n)則根據(jù)矩形的性質(zhì)得出矩形中心的縱坐標(biāo)為,
∵矩形ABCD的中心都在反比例函數(shù)y=上,
∴x=,
∴矩形ABCD中心的坐標(biāo)為(,)
∴BC=2(﹣m)=﹣2m,
∵S矩形ABCD=8,
∴(﹣2m)n=8,
4k﹣2mn=8,
∵點(diǎn)A(m,n)在y=上,
∴mn=k,
∴4k﹣2k=8
解得:k=4
故答案為:4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某風(fēng)景區(qū)內(nèi)有一瀑布,AB表示瀑布的垂直高度,在與瀑布底端同一水平位置的點(diǎn)D處測(cè)得瀑布頂端A的仰角β為45°,沿坡度i=1:3的斜坡向上走100米,到達(dá)觀(guān)景臺(tái)C,在C處測(cè)得瀑布頂端A的仰角α為37°,若點(diǎn)B、D、E在同一水平線(xiàn)上.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.41,≈3.16)
(1)觀(guān)景臺(tái)的高度CE為 米(結(jié)果保留準(zhǔn)確值);
(2)求瀑布的落差AB(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y件和銷(xiāo)售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:
(2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷(xiāo)售利潤(rùn),求該玩具銷(xiāo)售單價(jià)x應(yīng)定為多少元.
(3)在(1)問(wèn)條件下,若玩具廠(chǎng)規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,BC=2AB,E,F分別是BC,AD的中點(diǎn),AE,BF交于點(diǎn)O,連接EF,OC.
(1)求證:四邊形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā)相向而行,并以各自的速度勻速行駛,兩車(chē)在相遇之前同時(shí)改變了一次速度,并同時(shí)到達(dá)各自目的地,兩車(chē)距B地的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)分別求甲、乙兩車(chē)改變速度后y與x之間的函數(shù)關(guān)系式;
(2)若m=1,分別求甲、乙兩車(chē)改變速度之前的速度;
(3)如果兩車(chē)改變速度時(shí)兩車(chē)相距90km,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某愛(ài)心企業(yè)在政府的支持下投入資金,準(zhǔn)備修建一批室外簡(jiǎn)易的足球場(chǎng)和籃球場(chǎng),供市民免費(fèi)使用,修建1個(gè)足球場(chǎng)和1個(gè)籃球場(chǎng)共需8.5萬(wàn)元,修建2個(gè)足球場(chǎng)和4個(gè)籃球場(chǎng)共需27萬(wàn)元.
(1)求修建一個(gè)足球場(chǎng)和一個(gè)籃球場(chǎng)各需多少萬(wàn)元?
(2)該企業(yè)預(yù)計(jì)修建這樣的足球場(chǎng)和籃球場(chǎng)共20個(gè),投入資金不超過(guò)90萬(wàn)元,求至少可以修建多少個(gè)足球場(chǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y =-x+4與x軸,y軸分別交于點(diǎn)B,C,點(diǎn)A在x軸負(fù)半軸上,且OA=OB, 拋物線(xiàn)y =ax2+bx+4經(jīng)過(guò)A,B,C三點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P是第一象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,過(guò)點(diǎn)P作PD⊥BC,垂足為D,用含m的代數(shù)式表示線(xiàn)段PD的長(zhǎng),并求出線(xiàn)段PD的最大值;
(3)設(shè)點(diǎn)E為拋物線(xiàn)對(duì)稱(chēng)軸與直線(xiàn)BC的交點(diǎn),若A,B,E三點(diǎn)到同一直線(xiàn)的距離分別是d1,d2,d3,問(wèn)是否存在直線(xiàn)l,使得d1= d2=d3? 若存在,請(qǐng)直接寫(xiě)出d3的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面上,兩塊斜邊相等的直角三角板Rt△ABC和Rt△ADC拼在一起,使斜邊AC完全重合,且頂點(diǎn)B,D分別在AC的兩旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm
(1)填空:AD= (cm),DC= (cm)
(2)點(diǎn)M,N分別從A點(diǎn),C點(diǎn)同時(shí)以每秒1cm的速度等速出發(fā),且分別在AD,CB上沿A→D,C→B方向運(yùn)動(dòng),點(diǎn)N到AD的距離(用含x的式子表示)
(3)在(2)的條件下,取DC中點(diǎn)P,連接MP,NP,設(shè)△PMN的面積為y(cm2),在整個(gè)運(yùn)動(dòng)過(guò)程中,△PMN的面積y存在最大值,請(qǐng)求出y的最大值.
(參考數(shù)據(jù)sin75°=,sin15°=)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com