【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),拋物線交x軸的負(fù)半軸于點(diǎn),交x軸的正半軸于點(diǎn),交y軸的負(fù)半軸于點(diǎn),且.
(1)如圖,求a的值
(2)如圖,點(diǎn)在第一象限的拋物線上,連接,過(guò)點(diǎn)作軸,交直線于點(diǎn),連接與交于點(diǎn),若,求點(diǎn)的坐標(biāo)及的值;
(3)如圖,在(2)的條件下,點(diǎn)在第一象限的拋物線上,過(guò)點(diǎn)作的垂線,交x軸于點(diǎn),點(diǎn)在軸上(點(diǎn)在點(diǎn)的左側(cè)),,點(diǎn)在直線上,連接.若EP=OG,∠PEF+∠G=45°,求點(diǎn)的坐標(biāo).
【答案】(1);(2)點(diǎn)坐標(biāo)(8,11);tan∠DAB=1;(3)點(diǎn)坐標(biāo)(6,3).
【解析】
(1)求出對(duì)稱軸以及的坐標(biāo)即可解決問(wèn)題.
(2)首先證明,然后求出直線的解析式,利用方程組即可解決問(wèn)題.
(3)如圖3中,作于,于,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn).首先證明,推出,根據(jù),列出方程即可解決問(wèn)題.
解:(1)如圖1中,
∵對(duì)稱軸,
∴點(diǎn)坐標(biāo),點(diǎn)B坐標(biāo),
把代入拋物線解析式,得到,
∴.
(2)如圖2中,
∵,
∴,
∴,
∵直線解析式為,設(shè)直線解析式為,
把點(diǎn)代入得到,
∴直線解析式為,
由解得或,
∴點(diǎn)坐標(biāo).tan∠DAB==1.
(3)如圖3中,作于,于,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn).
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,設(shè)點(diǎn),
∵,
∴,
∴或(舍棄),
∴點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為推動(dòng)“時(shí)刻聽黨話 永遠(yuǎn)跟黨走”校園主題教育活動(dòng),計(jì)劃開展四項(xiàng)活動(dòng):A:黨史演講比賽,B:黨史手抄報(bào)比賽,C:黨史知識(shí)競(jìng)賽,D:紅色歌詠比賽.校團(tuán)委對(duì)學(xué)生最喜歡的一項(xiàng)活動(dòng)進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)本次共調(diào)查了 名學(xué)生;
(2)將圖1的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識(shí)競(jìng)賽”項(xiàng)目的4個(gè)學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項(xiàng)目比賽,請(qǐng)用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三點(diǎn)A(2,4)、B(3,5)、P(a,a),將線段AB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到CD,其中A、B的對(duì)應(yīng)點(diǎn)分別為C、D;
(1)當(dāng)a=2時(shí),
①在圖中畫出線段CD,保留作圖痕跡,并直接寫出C、D兩點(diǎn)的坐標(biāo);
②將線段CD向上平移m個(gè)單位,點(diǎn)C、D恰好同時(shí)落在反比例函數(shù)y=的圖象上,求m和k的值.
(2)若a=4,將函數(shù)y=(x>0)的圖象繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到新圖象,直線AB與新圖象的交點(diǎn)為E、F,則EF的長(zhǎng)為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某五金商店準(zhǔn)備從機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件進(jìn)行銷售.若每個(gè)甲種零件的進(jìn)價(jià)比每個(gè)乙種零件的進(jìn)價(jià)少2元,且用900元正好可以購(gòu)進(jìn)50個(gè)甲種零件和50個(gè)乙種零件.
(1)求每個(gè)甲種零件、每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)若該五金商店本次購(gòu)進(jìn)甲種零件的數(shù)量比購(gòu)進(jìn)乙種零件的數(shù)量的3倍還少5個(gè),購(gòu)進(jìn)兩種零件的總數(shù)量不超過(guò)95個(gè),該五金商店每個(gè)甲種零件的銷售價(jià)格為12元,每個(gè)乙種零件的銷售價(jià)格為15元,則將本次購(gòu)進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))超過(guò)371元,通過(guò)計(jì)算求出該五金商店本次從機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開展了“手機(jī)伴我健康行”主題活動(dòng).他們隨機(jī)抽取部分學(xué)生進(jìn)行“手機(jī)使用目的”和“每周使用手機(jī)時(shí)間”的問(wèn)卷調(diào)查,并繪制成如圖①②的統(tǒng)計(jì)圖。已知“查資料”人人數(shù)是40人。
請(qǐng)你根據(jù)以上信息解答以下問(wèn)題
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的圓心角度數(shù)是_______________。
(2)補(bǔ)全條形統(tǒng)計(jì)圖
(3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春華中學(xué)為了解九年級(jí)學(xué)生的身高情況,隨機(jī)抽測(cè)50名學(xué)生的身高后,所得部分資料如下(身高單位:,測(cè)量時(shí)精確到):
身高 | 148 | 151 | 154 | 155 | 157 | 158 | 160 | 161 | 162 | 164 |
人數(shù) | 1 | 1 | 2 | 1 | 2 | 3 | 4 | 3 | 4 | 5 |
身高 | 165 | 166 | 167 | 168 | 170 | 171 | 173 | 175 | 177 | 179 |
人數(shù) | 2 | 3 | 6 | 1 | 4 | 2 | 3 | 1 | 1 | 1 |
若將數(shù)據(jù)分成8組,取組距為,相應(yīng)的頻率分布表(部分)是:
分組 | 頻數(shù) | 頻率 |
147.5~151.5 | 2 | 0.04 |
151.5~155.5 | 3 | 0.06 |
155.5~159.5 | 5 | 0.10 |
159.5~163.5 | 11 | 0.22 |
163.5~167.5 | ________ | ________ |
167.5~171.5 | 7 | 0.14 |
171.5~175.5 | 4 | 0.08 |
175.5~179.5 | 2 | 0.04 |
合計(jì) | 50 | 1.00 |
請(qǐng)回答下列問(wèn)題:
(1)樣本數(shù)據(jù)中,學(xué)生身高的眾數(shù)、中位數(shù)各是多少?
(2)填寫頻率分布表中未完成的部分;
(3)若該校九年級(jí)共有850名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生身高在及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為調(diào)查學(xué)生的興趣愛好,抽查了部分學(xué)生,并制作了如下表格與條形統(tǒng)計(jì)圖:
頻數(shù) | 頻率 | |
體育 | 40 | 0.4 |
科技 | 25 | a |
藝術(shù) | b | 0.15 |
其它 | 20 | 0.2 |
請(qǐng)根據(jù)上圖完成下面題目:
(1)總?cè)藬?shù)為 人,a= ,b= .
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若全校有600人,請(qǐng)你估算一下全校喜歡藝術(shù)類學(xué)生的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:已知二次函數(shù)經(jīng)過(guò)點(diǎn).
(1)求該函數(shù)的表達(dá)式;
(2)如圖所示,點(diǎn)是拋物線上在第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)的橫坐標(biāo)為,連接,,.
①求的面積關(guān)于的函數(shù)關(guān)系式;
②求的面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).
拓展:在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,的坐標(biāo)為,若拋物線與線段有兩個(gè)不同的交點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com