【題目】某五金商店準(zhǔn)備從機械廠購進甲、乙兩種零件進行銷售.若每個甲種零件的進價比每個乙種零件的進價少2元,且用900元正好可以購進50個甲種零件和50個乙種零件.

(1)求每個甲種零件、每個乙種零件的進價分別為多少元?

(2)若該五金商店本次購進甲種零件的數(shù)量比購進乙種零件的數(shù)量的3倍還少5個,購進兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進價)超過371元,通過計算求出該五金商店本次從機械廠購進甲、乙兩種零件有哪幾種方案?

【答案】(1)甲種零件每個8元,乙種零件每個10元;(2)有兩種方案:①購進甲種零件67個,乙種零件24個;②購進甲種零件70個,乙種零件25個;

【解析】

1)設(shè)甲零件進價為x元,乙零件進價為y元,根據(jù)每個甲種零件比每個乙種零件的進價少2元,且買5個甲零件與買4個乙零件費用相同,列方程組求解;
2)設(shè)購進乙種零件a個,則購進甲種零件(3a-5)個,根據(jù)銷售這兩種零件的總利潤超過371元,列不等式求解;
3)根據(jù)總數(shù)量不超過95個,列不等式,求出a的取值范圍,然后設(shè)計出方案.

1)設(shè)甲零件進價為x元,乙零件進價為y元,由題意得:

,
解得:
答:甲零件進價為8元,乙零件進價為10元;

2)設(shè)購進乙種零件a個,則購進甲種零件(3a-5)個.
由題意得:(12-8)(3a-5+15-10a3713a-5+a≤95,
解得:23<a≤25

∴共有2種方案.
方案一:購進甲種零件67個,乙種零件24個;
方案二:購進甲種零件70個,乙種零件25個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點A04)、B44)、C6,2

1)用直尺畫出該圓弧所在圓的圓心M的位置,并標(biāo)出M點的坐標(biāo);

2)若D點的坐標(biāo)為(70),想一想直線CDM有怎樣的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,弦AB、CD相交點P,弦CA、BD的延長線交于S,∠APD2m°,∠PACm°+15°

1)求∠S的度數(shù);

2)連AD,BC,若,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,以BC為直徑作圓,交斜邊AB于點E,DAC的中點.連接DODE.則下列結(jié)論中不一定正確的是( 。

A. DOABB. ADE是等腰三角形

C. DEACD. DE是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°的直角三角板,直角頂點O位于坐標(biāo)原點,斜邊ABx軸,頂點A在函數(shù)x>0)的圖象上,頂點B在函數(shù)x>0)的圖象上,ABO=30°,則k=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。

A. 21.7 B. 22.4 C. 27.4 D. 28.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知:點A2016,0)、B0,2018),以AB為斜邊在直線AB下方作等腰直角ABC,則點C的坐標(biāo)為( 。

A. 22 B. 2,﹣2 C. (﹣1,1 D. (﹣1,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是正方形,∠PAQ=45°,將∠PAQ繞著正方形的頂點A旋轉(zhuǎn),使它與正方形ABCD的兩個外角∠EBC和∠FDC的平分線分別交于點MN,連接MN

(1)求證:△ABM∽△NDA

(2)連接BD,當(dāng)∠BAM的度數(shù)為多少時,四邊形BMND為矩形,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案