解方程組.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,一條拋物線與軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與軸交于點(diǎn)C,且當(dāng)x=-1和x=3時(shí),的值相等.直線與拋物線有兩個(gè)交點(diǎn),其中一個(gè)交點(diǎn)的橫坐標(biāo)是6,另一個(gè)交點(diǎn)是這條拋物線的頂點(diǎn)M.
(1)求這條拋物線的表達(dá)式.
(2)動點(diǎn)P從原點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長度的速度向點(diǎn)B運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)B出發(fā),在線段BC上以每秒2個(gè)單位長度的速度向點(diǎn)C運(yùn)動,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)立即停止運(yùn)動,設(shè)運(yùn)動時(shí)間為秒.
①若使△BPQ為直角三角形,請求出所有符合條件的值;
②求為何值時(shí),四邊形ACQ P的面積有最小值,最小值是多少?
(3)如圖2,當(dāng)動點(diǎn)P運(yùn)動到OB的中點(diǎn)時(shí),過點(diǎn)P作PD⊥軸,交拋物線于點(diǎn)D,連接OD,OM,MD得△ODM,將△OPD沿軸向左平移個(gè)單位長度(),將平移后的三角形與△ODM重疊部分的面積記為,求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在▱ABCD中,AB<BC,已知∠B=30°,AB=2,將△ABC沿AC翻折至△AB′C,使點(diǎn)B′落在▱ABCD所在的平面內(nèi),連接B′D.若△AB′D是直角三角形,則BC的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,則∠ABD=( )
| A. | 36° | B. | 54° | C. | 18° | D. | 64° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一食堂需要購買盒子存放食物,盒子有A,B兩種型號,單個(gè)盒子的容量和價(jià)格如表.現(xiàn)有15升食物需要存放且要求每個(gè)盒子要裝滿,由于A型號盒子正做促銷活動:購買三個(gè)及三個(gè)以上可一次性返還現(xiàn)金4元,則購買盒子所需要最少費(fèi)用為 元.
型號 | A | B |
單個(gè)盒子容量(升) | 2 | 3 |
單價(jià)(元) | 5 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知雙曲線y=(x>0),直線l1:y﹣=k(x﹣)(k<0)過定點(diǎn)F且與雙曲線交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2)(x1<x2),直線l2:y=﹣x+.
(1)若k=﹣1,求△OAB的面積S;
(2)若AB=,求k的值;
(3)設(shè)N(0,2),P在雙曲線上,M在直線l2上且PM∥x軸,求PM+PN最小值,并求PM+PN取得最小值時(shí)P的坐標(biāo).(參考公式:在平面直角坐標(biāo)系中,若A(x1,y1),B(x2,y2)則A,B兩點(diǎn)間的距離為AB=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線y=ax2+bx+n(a≠0)過E,A′兩點(diǎn).
(1)填空:∠AOB= 45 °,用m表示點(diǎn)A′的坐標(biāo):A′( m , ﹣m );
(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且=時(shí),△D′OE與△ABC是否相似?說明理由;
(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關(guān)系式;
②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,平面上直線a,b分別經(jīng)過線段OK兩端點(diǎn)(數(shù)據(jù)如圖),則a,b相交所成的銳角是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com