【題目】已知矩形ABCDAB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標(biāo)系,在CD邊上取一點(diǎn)E,將△ADE沿AE翻折,點(diǎn)D恰好落在BC邊上的點(diǎn)F處.

1)求線段EF長(zhǎng);

2)在平面內(nèi)找一點(diǎn)G,

①使得以AB、FG為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);

②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m個(gè)單位,若四邊形AOGF為菱形,請(qǐng)求出m的值并寫出點(diǎn)G的坐標(biāo).

【答案】1EF=;(2)①點(diǎn)G的坐標(biāo)為(-8,6)或(8,6)或(8,-6);②m=4,點(diǎn)G的坐標(biāo)是(8,-6.

【解析】

1)由矩形的性質(zhì)得到AD=BC=10CD=AB=6,由折疊得AF=AD=10,根據(jù)勾股定理求出OF=8,得到FC=OC-OF=2,再利用勾股定理得到 ,即可求出EF

2)①分別以AB、AFBF為平行四邊形的對(duì)角線,根據(jù)平行四邊形的性質(zhì)得到點(diǎn)G的坐標(biāo);

②根據(jù)菱形的性質(zhì)求出AO=AF=10,由此得到平移的距離m=4, 設(shè)FGx軸于點(diǎn)H,證明四邊形OBFH是矩形,得到=OB=4,OH=BF=8,求出HG=10-4=6,由此求出點(diǎn)G的坐標(biāo)是(8,-6.

1)∵四邊形ABCD是矩形,

AD=BC=10,CD=AB=6

由折疊得AF=AD=10,

∵∠AOC=90°AO=6,

OF=8,

FC=OC-OF=2,

RtEFC中, ,

,

解得EF=;

2)①當(dāng)AB為平行四邊形的對(duì)角線時(shí),AG=BFAGBF,∴點(diǎn)G的坐標(biāo)為(-8,6);

當(dāng)AF為平行四邊形的對(duì)角線時(shí),AG=BFAGBF,∴點(diǎn)G的坐標(biāo)為(8,6);

當(dāng)BF為平行四邊形的對(duì)角線時(shí),FG=ABFGAB,∴點(diǎn)G的坐標(biāo)為(8,-6);

綜上,點(diǎn)G的坐標(biāo)為(-8,6)或(8,6)或(8,-6);

②∵四邊形AOGF是菱形,

AO=AF=10,

∴矩形ABCD平移的距離m=AO-AB=10-6=4,即OB=4,

設(shè)FGx軸于點(diǎn)H

AOFG,BCx軸,

∴∠FBO=BOH=OHF=90°,

∴四邊形OBFH是矩形,

FH=OB=4,OH=BF=8

HG=10-4=6,

∴點(diǎn)G的坐標(biāo)是(8-6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,按照此規(guī)律繼續(xù)下去,則S2016的值為( 。

A. 2013B. 2014C. 2013D. 2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以RtABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,FAB的中點(diǎn),連接DF,EF,∠ACB90°,∠ABC30°.則以下4個(gè)結(jié)論:①ACDF;②四邊形BCDF為平行四邊形;③DA+DFBE;④其中,正確的 是( 。

A.只有①②B.只有①②③C.只有③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線軸相交于O、A兩點(diǎn)(其中O為坐標(biāo)原點(diǎn)),過(guò)點(diǎn)P2,2a)作直線PMx軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(其中B、C不重合),連接APy軸于點(diǎn)N,連接BCPC

1時(shí),求拋物線的解析式和BC的長(zhǎng);

2)如圖時(shí),若APPC,求的值;

3)是否存在實(shí)數(shù),使,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)120元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑。如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用,設(shè)每個(gè)房間定價(jià)增加10 x元(x為整數(shù))。

(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。

(2)(4分)設(shè)賓館每天的利潤(rùn)為W元,當(dāng)每間房?jī)r(jià)定價(jià)為多少元時(shí),賓館每天所獲利潤(rùn)最大,最大利潤(rùn)是多少?

(3)(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:當(dāng)日所獲利潤(rùn)不低于5000元,賓館為游客居住的房間共支出費(fèi)用沒(méi)有超過(guò)600元,每個(gè)房間剛好住滿2人。問(wèn):這天賓館入住的游客人數(shù)最少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是⊙O外一動(dòng)點(diǎn),PA、PB、CD是⊙O的三條切線,C、D分別在PA、PB上,連接OC、OD.設(shè)∠P,COD,則yx的函數(shù)關(guān)系圖象為(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】七年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng):評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:

1)在這次評(píng)價(jià)中,一共抽查了________名學(xué)生;

2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為________度;

3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

4)如果全市有8600名七年級(jí)學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的七年級(jí)學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B-2,0),點(diǎn)C8,0),與y軸交于點(diǎn)A

1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)BC重合),過(guò)點(diǎn)NNM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);

3)連接OM,在(2)的結(jié)論下,求OMAC的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案